Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_1_a7, author = {F. M. Malyshev}, title = {Proof of the {Brunn--Minkowski} {Theorem} by {Brunn} {Cuts}}, journal = {Matemati\v{c}eskie zametki}, pages = {80--92}, publisher = {mathdoc}, volume = {111}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a7/} }
F. M. Malyshev. Proof of the Brunn--Minkowski Theorem by Brunn Cuts. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 80-92. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a7/
[1] H. Brunn, Uber Ovale und Eiflachen, Inag. Diss., Munchen, 1887
[2] H. Minkowski, Geometrie der Zahlen, B.G. Teubner, Leipzig und Berlin, 1910 | Zbl
[3] B. N. Delone, “Dokazatelstvo neravenstva Bruna–Minkovskogo”, UMN, 1936, no. 2, 39–46 | Zbl
[4] Yu. D. Burago, V. A. Zalgaller, Geometricheskie neravenstva, Nauka, L., 1980
[5] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987
[6] V. V. Buldygin, A. B. Kharazishvili, Neravenstvo Brunna–Minkovskogo i ego prilozheniya, Naukova Dumka, Kiev, 1985
[7] R. J. Gardner, “The Brunn–Minkowski inequality”, Bull. Amer. Math. Soc. (N.S.), 39:3 (2002), 355–405 | DOI | Zbl
[8] G. Khadviger, Lektsii ob ob'eme, ploschadi poverkhnosti i izometrii, Nauka, M., 1966
[9] K. Leikhtveis, Vypuklye mnozhestva, Nauka, M., 1985 | MR | Zbl
[10] V. Blyashke, Krug i shar, Nauka, M., 1967 | MR | Zbl
[11] R. Schneider, “Convex Bodies: The Brunn–Minkowski theory”, Encyclopedia of Math. Appl., 151, Cambridge Univ. Press, Cambridge, 2013 | MR
[12] F. Barthe, “The Brunn–Minkowski theorem and related geometric and functional inequalities”, Proceedings of the International Congress of Mathematicians, European Math. Soc., 2006, 1529–1546 | Zbl
[13] K. Ball, “An Elementary introduction to monotone transportation”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1850, Springer, Berlin, 2004, 41–52 | DOI | Zbl
[14] A. D. Aleksandrov, Vypuklye mnogogranniki, GITTL, M.-L., 1950
[15] R. J. Gardner, D. Hug, W. Weil, “The Orlicz–Brunn–Minkowski theory: A general framework, additions, and inequalities”, J. Differential. Geom., 2014, no. 3, 427–476 | MR | Zbl
[16] B. Berndtsson, “A Rrunn–Minkowski type inequalities for Fano manifolds and some uniqueness theorems in Kahler geometry”, Invent. Math., 200:1 (2015), 149–200 | DOI | Zbl
[17] B. S. Timergaliev, “Generalization of the Brunn–Vinkowski inequalitybin the Form of Hadwiger for Power Moments”, Lobachevskii J. Math., 37:6 (2016), 794–806 | DOI | Zbl
[18] F. M. Malyshev, “Dokazatelstva teoremy Brunna—Minkovskogo elementarnymi metodami”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 182, VINITI RAN, M., 2020, 70–94 | DOI
[19] F. M. Malyshev, “Zavershenie dokazatelstva teoremy Brunna elementarnymi sredstvami”, Chebyshevskii sb., 22:2 (2021), 160–182 | DOI | Zbl
[20] E. G. Belousov, Vvedenie v vypuklyi analiz i tselochislennoe programmirovanie, Izd-vo Mosk. un-ta, M., 1977