Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_1_a6, author = {E. D. Kosov}, title = {Distributions of {Second} {Order} {Polynomials} in {Gaussian} {Random} {Variables}}, journal = {Matemati\v{c}eskie zametki}, pages = {67--79}, publisher = {mathdoc}, volume = {111}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a6/} }
E. D. Kosov. Distributions of Second Order Polynomials in Gaussian Random Variables. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 67-79. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a6/
[1] Yu. A. Davydov, G. V. Martynova, “Predelnoe povedenie raspredelenii kratnykh stokhasticheskikh integralov”, Statistika i upravlenie sluchainymi protsessami, Nauka, M., 1987, 55–57
[2] I. Nourdin, G. Poly, “Convergence in total variation on Wiener chaos”, Stoch. Process. Appl., 123:2 (2013), 651–674 | DOI | Zbl
[3] I. Nourdin, D. Nualart, G. Poly, “Absolute continuity and convergence of densities for random vectors on Wiener chaos”, Electron. J. Probab., 18 (2013), 1–19 | DOI
[4] J. C. Breton, “Convergence in variation of the joint laws of multiple Wiener–Ito integrals”, Statist. Probab. Lett., 76:17 (2006), 1904–1913 | DOI | Zbl
[5] V. I. Bogachev, E. D. Kosov, G. I. Zelenov, “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432 | DOI | Zbl
[6] V. I. Bogachev, G. I. Zelenov, E. D. Kosov, “Prinadlezhnost raspredelenii mnogochlenov k klassam Nikolskogo–Besova”, Dokl. AN, 469:6 (2016), 651–655 | MR | Zbl
[7] E. D. Kosov, “Fractional smoothness of images of logarithmically concave measures under polynomials”, J. Math. Anal. Appl., 462:1 (2018), 390–406 | DOI | Zbl
[8] G. I. Zelenov, “On distances between distribution of polynomials”, Theory Stoch. Process, 22:2 (2017), 79–85 | Zbl
[9] V. I. Bogachev, “Raspredeleniya mnogochlenov na mnogomernykh i beskonechnomernykh prostranstvakh s merami”, UMN, 71:4 (2016), 107–154 | DOI | MR | Zbl
[10] V. I. Bogachev, “Distributions of polynomials in many variables and Nikolskii–Besov spaces”, Real Anal. Exchange, 44:1 (2019), 49–64 | DOI | Zbl
[11] V. I. Bogachev, “Mnogochleny Chebysheva–Ermita i raspredeleniya mnogochlenov ot gaussovskikh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 66:4 (2021), 693–717 | DOI
[12] E. D. Kosov, “Total variation distance estimates via $L^2$-norm for polynomials in log-concave random vectors”, Int. Math. Res. Not. (to appear)
[13] E. D. Kosov, “Otsenka mezhdu rasstoyaniyami po variatsii i v prostranstve $L^2$ dlya mnogochlenov ot logarifmicheski vognutykh sluchainykh vektorov”, Dokl. AN, 488:2 (2019), 123–125 | DOI | Zbl
[14] C. Borell, “Convex measures on locally convex spaces”, Ark. Mat., 12:1 (1974), 239–252 | DOI | Zbl
[15] V. I. Bogachev, Measure Theory, V. 1, 2, Springer, Berlin, 2007 | MR | Zbl
[16] V. Bally, L. Caramellino, “On the distances between probability density functions”, Electron. J. Probab., 19 (2014), 1–33 | DOI
[17] V. Bally, L. Caramellino, “Convergence and regularity of probability laws by using an interpolation method”, Ann. Probab., 45:2 (2017), 1110–1159 | DOI | Zbl
[18] V. Bally, L. Caramellino, “Total variation distance between stochastic polynomials and invariance principles”, Ann. Probab., 47:6 (2019), 3762–3811 | DOI | Zbl
[19] V. Bally, L. Caramellino, G. Poly, “Regularization lemmas and convergence in total variation”, Electron. J. Probab., 25 (2020), 1–20 | DOI
[20] E. D. Kosov, “On fractional regularity of distributions of functions in Gaussian random variables”, Fract. Calc. Appl. Anal., 22:5 (2019), 1249–1268 | DOI | Zbl
[21] S. Douissi, K. Es-Sebaiy, G. Kerchev, I. Nourdin, Berry–Esseen Bounds of Second Moment Estimators for Gaussian Processes Observed at High Frequency, 2021, arXiv: 2102.04810
[22] K. Es-Sebaiy, F. G. Viens, “Optimal rates for parameter estimation of stationary Gaussian processes”, Stoch. Process. Appl., 129:9 (2019), 3018–3054 | DOI | Zbl
[23] A. Olenko, V. Vaskovych, “Non-central limit theorems for functionals of random fields on hypersurfaces”, ESAIM Probab. Stat., 24 (2020), 315–340 | DOI | Zbl
[24] V. I. Bogachev, Weak Convergence of Measures, Amer. Math. Soc., Providence, RI, 2018 | MR | Zbl
[25] V. I. Bogachev, “O sekventsialnykh svoistvakh prostranstv mer”, Matem. zametki, 110:3 (2021), 459–464 | Zbl
[26] T. V. Bogachev, S. N. Popova, “Ob optimizatsii nalogovykh funktsii”, Matem. zametki, 109:2 (2021), 170–179 | Zbl
[27] V. I. Bogachev, Gaussian Measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[28] R. Zintout, “The total variation distance between two double Wiener–Ito integrals”, Statist. Probab. Lett., 83:10 (2013), 2160–2167 | DOI | Zbl
[29] V. I. Bogachev, E. D. Kosov, S. N. Popova, “O raspredeleniyakh odnorodnykh i vypuklykh funktsii ot gaussovskikh sluchainykh velichin”, Izv. RAN. Ser. matem., 85:5 (2021), 25–57 | DOI
[30] V. I. Bogachev, E. D. Kosov, S. N. Popova, “Plotnosti raspredelenii odnorodnykh funktsii ot gaussovskikh sluchainykh vektorov”, Dokl. AN, 495:1 (2020), 17–21 | Zbl
[31] F. Götze, A. Naumov, V. Spokoiny, V. Ulyanov, “Large ball probabilities, Gaussian comparison and anti-concentration”, Bernoulli, 25:4A (2019), 2538–2563 | MR | Zbl
[32] A. Naumov, V. Spokoiny, V. Ulyanov, “Bootstrap confidence sets for spectral projectors of sample covariance”, Probab. Theory Related Fields, 174:3 (2019), 1091–1132 | DOI | Zbl
[33] S. G. Bobkov, A. A. Naumov, V. V. Ulyanov, Two-Sided Inequalities for the Density Function's Maximum of Weighted Sum of Chi-Square Variables, 2020, arXiv: 2012.10747