Sufficient Conditions for a Minimum of a Strongly Quasiconvex Function on a Weakly Convex Set
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 39-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a finite-dimensional minimization problem for a strongly quasiconvex function on a weakly convex set. We obtain sufficient conditions for its solution expressed in terms of the strong quasiconvexity constants of the objective function and the weak convexity of the admissible set of arguments, as well as their local characteristics. We separately consider the case of specifying an admissible set by the Lebesgue set of a weakly convex function. For the case of a differentiable objective function, we establish sufficient conditions for a local minimum, including a “strong” stationarity condition and indicate the radius of the corresponding neighborhood.
Keywords:
strongly quasiconvex function, strongly and weakly convex sets and functions, subdifferential, normal cone, radius of the neighborhood of a local minimum.
Mots-clés : sufficient conditions for a minimum
Mots-clés : sufficient conditions for a minimum
@article{MZM_2022_111_1_a4,
author = {S. I. Dudov and M. A. Osiptsev},
title = {Sufficient {Conditions} for a {Minimum} of a {Strongly} {Quasiconvex} {Function} on a {Weakly} {Convex} {Set}},
journal = {Matemati\v{c}eskie zametki},
pages = {39--53},
publisher = {mathdoc},
volume = {111},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a4/}
}
TY - JOUR AU - S. I. Dudov AU - M. A. Osiptsev TI - Sufficient Conditions for a Minimum of a Strongly Quasiconvex Function on a Weakly Convex Set JO - Matematičeskie zametki PY - 2022 SP - 39 EP - 53 VL - 111 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a4/ LA - ru ID - MZM_2022_111_1_a4 ER -
S. I. Dudov; M. A. Osiptsev. Sufficient Conditions for a Minimum of a Strongly Quasiconvex Function on a Weakly Convex Set. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 39-53. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a4/