Joint Universality of Certain Dirichlet Series
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 15-23

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we define the Dirichlet series $ \zeta_{u_T j} (s)$, $ j = 1, \dots, r$, absolutely converging in the half-plane $ \operatorname{Re} s> 1/2 $ and prove that the set of shifts $ (\zeta_{u_T 1} (s + ia_1 \tau), \dots, \zeta_{u_T r} (s + ia_r \tau)) $ approximating a given set of analytic functions has a positive density on the interval $ [T, T + H]$, $ H = o (T) $ as $ T \to \infty$. Here $ a_1, \dots, a_r \in \mathbb{R} $ are algebraic numbers linearly independent over $ \mathbb{Q} $ and $ u_T \to \infty $ as $ T \to \infty$.
Keywords: Riemann zeta function, Voronin's theorem, universality.
@article{MZM_2022_111_1_a2,
     author = {V. Garbaliauskien\.{e} and D. Siauciunas},
     title = {Joint {Universality} of {Certain} {Dirichlet} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a2/}
}
TY  - JOUR
AU  - V. Garbaliauskienė
AU  - D. Siauciunas
TI  - Joint Universality of Certain Dirichlet Series
JO  - Matematičeskie zametki
PY  - 2022
SP  - 15
EP  - 23
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a2/
LA  - ru
ID  - MZM_2022_111_1_a2
ER  - 
%0 Journal Article
%A V. Garbaliauskienė
%A D. Siauciunas
%T Joint Universality of Certain Dirichlet Series
%J Matematičeskie zametki
%D 2022
%P 15-23
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a2/
%G ru
%F MZM_2022_111_1_a2
V. Garbaliauskienė; D. Siauciunas. Joint Universality of Certain Dirichlet Series. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 15-23. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a2/