Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_1_a2, author = {V. Garbaliauskien\.{e} and D. Siauciunas}, title = {Joint {Universality} of {Certain} {Dirichlet} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {15--23}, publisher = {mathdoc}, volume = {111}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a2/} }
V. Garbaliauskienė; D. Siauciunas. Joint Universality of Certain Dirichlet Series. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 15-23. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a2/
[1] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl
[2] H. Bohr, R. Courant, “Neue Anwendungen der Theorie der Diophantischen Approximationen auf Riemannschen Zetafunktion”, Angew. Math., 144 (1914), 249–274 | Zbl
[3] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Acad. Publ., Dordrecht, 1996 | MR
[4] Ł. Pańkowski, “Joint universality for dependent $L$-functions”, Ramanujan J., 45:1 (2018), 181–195 | DOI
[5] A. Laurinčikas, R. Macaitienė, D. Šiaučiūnas, “A generalization of the Voronin theorem”, Lith. Math. J., 59:2 (2019), 156–168 | DOI | Zbl
[6] A. Reich, “Werteverteilung von Zetafunktionen”, Arch. Math., 34 (1980), 440–451 | DOI | Zbl
[7] A. Dubickas, A. Laurinčikas, “Distribution modulo 1 and the discrete universality of the Riemann zeta-function”, Abh. Math. Semin. Univ. Hambg., 86:1 (2016), 79–87 | DOI | Zbl
[8] R. Macaitien{. e}, “On discrete universality of the Riemann zeta-function with respect to uniformly distributed shifts”, Arch. Math., 108:3 (2017), 271–281 | DOI | Zbl
[9] A. Laurinčikas, “Discrete universality of the Riemann zeta-function and uniform distribution modulo 1”, Algebra i analiz, 30:1 (2018), 139–150 | MR
[10] R. Garunkštis, A. Laurinčikas, R. Macaitienė, “Zeros of the Riemann zeta-function and its universality”, Acta Arith., 181:2 (2017), 127–142 | DOI | Zbl
[11] M. Korolev, A. Laurinčikas, “A new application of the Gram points”, Aequationes Math., 93:5 (2019), 859–873 | DOI | Zbl
[12] A. Laurinčikas, “On the universality of the Riemann zeta-function”, Lith. Math. J., 35:4 (1995), 399–402 | DOI | Zbl
[13] A. Laurinčikas, D. Šiaučiūnas, G. Vadeikis, “Weighted discrete universality of the Riemann zeta-function”, Math. Model. Anal., 25:1 (2020), 21–36 | DOI | Zbl
[14] A. Laurinchikas, L. Meshka, “Utochnenie neravenstva universalnosti”, Matem. zametki, 96:6 (2014), 905–910 | DOI | MR | Zbl
[15] S. M. Voronin, “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27 (1975), 493–503 | DOI | Zbl
[16] A. Laurinchikas, “O sovmestnoi universalnosti dzeta-funktsii Rimana”, Matem. zametki, 110:2 (2021), 221–233 | DOI
[17] A. Laurinčikas, “Approximation of analytic functions by an absolutely convergent Dirichlet series”, Arch. Math., 117:1 (2021), 53–63 | DOI | Zbl
[18] M. Iasas, A. Laurinchikas, D. Shyauchyunas, “O priblizhenii analiticheskikh funktsii sdvigami absolyutno skhodyaschegosya ryada Dirikhle”, Matem. zametki, 109:6 (2021), 872–883 | DOI
[19] A. Laurinčikas, D. Šiaučiūnas, “Discrete approximation by a Dirichlet series connected to the Riemann zeta-function”, Mathematics, 9:10 (2021), 1073 | DOI
[20] M. Jasas, A. Laurinčikas, M. Stoncelis, D. Šiaučiūnas, “Discrete universality of absolutely convergent Dirichlet series”, Math. Model. Anal. (to appear)
[21] S. N. Mergelyan, “Ravnomernoe priblizhenie funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 | MR | Zbl