Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 125-133

Voir la notice de l'article provenant de la source Math-Net.Ru

For the McKendrick model of the dynamics of an age-structured population, we consider the inverse problem of reconstructing two coefficients of the model: in the equation and in the nonlocal boundary condition of integral form. The values of the solution on a part of the boundary are used as the additional information in the inverse problem. We obtain conditions for the sought coefficients to be uniquely determined. The derived integral formulas can be used to solve the inverse problem numerically by the iteration method, taking into account the fact that the inverse problem is ill posed.
Keywords: inverse problem, population dynamics model, age-structured model.
@article{MZM_2022_111_1_a11,
     author = {A. Yu. Shcheglov},
     title = {Uniqueness of the {Solution} of the {Inverse} {Problem} for a {Model} of the {Dynamics} of an {Age-Structured} {Population}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {125--133},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a11/}
}
TY  - JOUR
AU  - A. Yu. Shcheglov
TI  - Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population
JO  - Matematičeskie zametki
PY  - 2022
SP  - 125
EP  - 133
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a11/
LA  - ru
ID  - MZM_2022_111_1_a11
ER  - 
%0 Journal Article
%A A. Yu. Shcheglov
%T Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population
%J Matematičeskie zametki
%D 2022
%P 125-133
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a11/
%G ru
%F MZM_2022_111_1_a11
A. Yu. Shcheglov. Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 125-133. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a11/