Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_1_a11, author = {A. Yu. Shcheglov}, title = {Uniqueness of the {Solution} of the {Inverse} {Problem} for a {Model} of the {Dynamics} of an {Age-Structured} {Population}}, journal = {Matemati\v{c}eskie zametki}, pages = {125--133}, publisher = {mathdoc}, volume = {111}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a11/} }
TY - JOUR AU - A. Yu. Shcheglov TI - Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population JO - Matematičeskie zametki PY - 2022 SP - 125 EP - 133 VL - 111 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a11/ LA - ru ID - MZM_2022_111_1_a11 ER -
%0 Journal Article %A A. Yu. Shcheglov %T Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population %J Matematičeskie zametki %D 2022 %P 125-133 %V 111 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a11/ %G ru %F MZM_2022_111_1_a11
A. Yu. Shcheglov. Uniqueness of the Solution of the Inverse Problem for a Model of the Dynamics of an Age-Structured Population. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 125-133. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a11/
[1] W. O. Kermack, A. G. McKendrick, “Contributions to the mathematical theory of epidemics. I”, J. Washington Acad. Sci., 27:7 (1937), 299–303
[2] A. J. Lotka, “Population analysis: a theorem regarding the stable age distribution”, Proc. Royal Soc., 115A (1927), 700–721
[3] A. N. Kolmogorov, “Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii”, Problemy kibernetiki, 1972, no. 5, 100–106
[4] H. Inaba, “Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model”, Math. Biol., 54:1 (2007), 101–146 | DOI | Zbl
[5] M. Iannelli, F. Milner, The Basic Approach to Age-Structured Population Dynamics. Models, Methods and Numerics, Springer, Cham, 2017 | DOI | Zbl
[6] D. M. Ediev, “O suschestvovanii i edinstvennosti otsenki ozhidaemoi prodolzhitelnosti zhizni v modeli stabilnogo naseleniya”, Matem. modelirovanie, 33:3 (2021), 73–84 | DOI | Zbl
[7] A. M. Denisov, A. S. Makeev, “Iteratsionnye metody resheniya obratnoi zadachi dlya odnoi modeli populyatsii”, Zh. vychisl. matem. i matem. fiz., 44:8 (2004), 1480–1489 | MR | Zbl
[8] D. V. Churbanov, “Uniqueness of finding the coefficient of the derivative in a first order nonlinear equation”, Moscow Univ. Comput. Math. Cybernet., 37:1 (2013), 8–13 | DOI | Zbl
[9] S. G. Golovina, A. G. Razborov, “Reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimensional internal initial?boundary value problem for the homogeneous heat equation”, J. Comput. Math. Model., 25:1 (2014), 49–56 | DOI | Zbl
[10] S. I. Solov'eva, S. R. Tuikina, “Simulating the heart's electric activity: numerical methods for inverse problems”, Moscow Univ. Comput. Math. Cybernet., 41:2 (2017), 51–57 | DOI
[11] S. G. Golovina, E. V. Zakharov, “A Numerical way of determining the boundaries of a system of bodies in a three-dimensional medium by means of integral equations”, Moscow Univ. Comput. Math. Cybernet., 42:3 (2018), 100–104 | DOI
[12] A. V. Baev, “Ob odnoi obratnoi zadache dlya uravneniya KdV s peremennym koeffitsientom”, Matem. zametki, 106:5 (2019), 788–792 | DOI | Zbl
[13] A. M. Denisov, A. A. Efimov, “The inverse problem for an integro-differential equation and its solution method”, J. Comput. Math. Model., 30:4 (2019), 403–412 | DOI | Zbl
[14] I. V. Tikhonov, Vu Nguyen Son Tung, “Solvability of a nonlocal problem for an evolution equation with a super-stable semigroup”, Differential Equations, 56:4 (2020), 478–498 | DOI | Zbl
[15] S. Gavrilov, “A numerical method for determining the inhomogeneity boundary in the electrical impedance tomography problem in the case of piecewise-constant conductivity”, Math. Models Comput. Simulations, 13:4 (2021), 579–585 | DOI