Quotients of Dense Subsets of Integers
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 117-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The lower bound on the set of quotients of two subsets $A$, $B$ from finite intervals of natural numbers with positive density is refined. This bound yields an estimate of short distances between the elements of the product of these two sets. In this paper, we borrow problems, approaches, and arguments proposed in [5] of J. Cilleruelo, D. S. Ramana, and O. Ramaré.
Keywords: divisibility, products
Mots-clés : quotients, distances.
@article{MZM_2022_111_1_a10,
     author = {Yu. N. Shteinikov},
     title = {Quotients of {Dense} {Subsets} of {Integers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {117--124},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a10/}
}
TY  - JOUR
AU  - Yu. N. Shteinikov
TI  - Quotients of Dense Subsets of Integers
JO  - Matematičeskie zametki
PY  - 2022
SP  - 117
EP  - 124
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a10/
LA  - ru
ID  - MZM_2022_111_1_a10
ER  - 
%0 Journal Article
%A Yu. N. Shteinikov
%T Quotients of Dense Subsets of Integers
%J Matematičeskie zametki
%D 2022
%P 117-124
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a10/
%G ru
%F MZM_2022_111_1_a10
Yu. N. Shteinikov. Quotients of Dense Subsets of Integers. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 117-124. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a10/

[1] A. Sárközy, “Unsolved problems in number theory”, Period. Math. Hungar., 42:1-2 (2001), 17–35 | DOI | MR | Zbl

[2] G. Bérczi, “On the distribution of product of members of a sequence with positive density”, Period. Math. Hungar., 44:2 (2002), 137–145 | DOI | MR | Zbl

[3] C. Sándor, “On the minimal gaps between products of members of sequence with positive density”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 48 (2005), 3–7 | MR | Zbl

[4] J. Cilleruelo, T. H. Le, “On a question of Sárközy on gaps of product sequences”, Israel J. Math., 179 (2010), 285–295 | DOI | MR | Zbl

[5] J. Cilleruelo, D. S. Ramana, O. Ramaré, “The number of rational numbers determined by large sets of integers”, Bull. London Math. Soc., 42:3 (2010), 517–526 | DOI | MR | Zbl

[6] J. Cilleruelo, “A note on product sets of rationals”, Int. J. Number Theory, 12:5 (2016), 1415–1420 | DOI | MR | Zbl

[7] Kh. Silleruelo, D. S. Ramana, O. Ramare, “Chastnye i proizvedeniya podmnozhestv nulevoi plotnosti mnozhestva naturalnykh chisel”, Analiticheskaya i kombinatornaya teoriya chisel, Tr. MIAN, 296, MAIK «Nauka/Interperiodika», M., 2017, 58–71 | DOI | MR

[8] Yu. N. Shteinikov, “O razmere chastnogo dvukh podmnozhestv naturalnykh chisel”, Garmonicheskii analiz, teoriya priblizhenii i teoriya chisel, Tr. MIAN, 303, MAIK «Nauka/Interperiodika», M., 2018, 279–287 | DOI | MR