Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_1_a10, author = {Yu. N. Shteinikov}, title = {Quotients of {Dense} {Subsets} of {Integers}}, journal = {Matemati\v{c}eskie zametki}, pages = {117--124}, publisher = {mathdoc}, volume = {111}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a10/} }
Yu. N. Shteinikov. Quotients of Dense Subsets of Integers. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 117-124. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a10/
[1] A. Sárközy, “Unsolved problems in number theory”, Period. Math. Hungar., 42:1-2 (2001), 17–35 | DOI | MR | Zbl
[2] G. Bérczi, “On the distribution of product of members of a sequence with positive density”, Period. Math. Hungar., 44:2 (2002), 137–145 | DOI | MR | Zbl
[3] C. Sándor, “On the minimal gaps between products of members of sequence with positive density”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 48 (2005), 3–7 | MR | Zbl
[4] J. Cilleruelo, T. H. Le, “On a question of Sárközy on gaps of product sequences”, Israel J. Math., 179 (2010), 285–295 | DOI | MR | Zbl
[5] J. Cilleruelo, D. S. Ramana, O. Ramaré, “The number of rational numbers determined by large sets of integers”, Bull. London Math. Soc., 42:3 (2010), 517–526 | DOI | MR | Zbl
[6] J. Cilleruelo, “A note on product sets of rationals”, Int. J. Number Theory, 12:5 (2016), 1415–1420 | DOI | MR | Zbl
[7] Kh. Silleruelo, D. S. Ramana, O. Ramare, “Chastnye i proizvedeniya podmnozhestv nulevoi plotnosti mnozhestva naturalnykh chisel”, Analiticheskaya i kombinatornaya teoriya chisel, Tr. MIAN, 296, MAIK «Nauka/Interperiodika», M., 2017, 58–71 | DOI | MR
[8] Yu. N. Shteinikov, “O razmere chastnogo dvukh podmnozhestv naturalnykh chisel”, Garmonicheskii analiz, teoriya priblizhenii i teoriya chisel, Tr. MIAN, 303, MAIK «Nauka/Interperiodika», M., 2018, 279–287 | DOI | MR