Strong Polynomial Completeness of Almost All Quasigroups
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 8-14
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, it is proved that almost all quasigroups are strongly polynomially complete, i.e., are not isotopic to quasigroups that are not polynomially complete.
Mots-clés :
quasigroup
Keywords: isotopy, simplicity, affinity, polynomial completeness.
Keywords: isotopy, simplicity, affinity, polynomial completeness.
@article{MZM_2022_111_1_a1,
author = {A. V. Galatenko and V. V. Galatenko and A. E. Pankratiev},
title = {Strong {Polynomial} {Completeness} of {Almost} {All} {Quasigroups}},
journal = {Matemati\v{c}eskie zametki},
pages = {8--14},
publisher = {mathdoc},
volume = {111},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/}
}
TY - JOUR AU - A. V. Galatenko AU - V. V. Galatenko AU - A. E. Pankratiev TI - Strong Polynomial Completeness of Almost All Quasigroups JO - Matematičeskie zametki PY - 2022 SP - 8 EP - 14 VL - 111 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/ LA - ru ID - MZM_2022_111_1_a1 ER -
A. V. Galatenko; V. V. Galatenko; A. E. Pankratiev. Strong Polynomial Completeness of Almost All Quasigroups. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 8-14. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/