Strong Polynomial Completeness of Almost All Quasigroups
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 8-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is proved that almost all quasigroups are strongly polynomially complete, i.e., are not isotopic to quasigroups that are not polynomially complete.
Mots-clés : quasigroup
Keywords: isotopy, simplicity, affinity, polynomial completeness.
@article{MZM_2022_111_1_a1,
     author = {A. V. Galatenko and V. V. Galatenko and A. E. Pankratiev},
     title = {Strong {Polynomial} {Completeness} of {Almost} {All} {Quasigroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {8--14},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/}
}
TY  - JOUR
AU  - A. V. Galatenko
AU  - V. V. Galatenko
AU  - A. E. Pankratiev
TI  - Strong Polynomial Completeness of Almost All Quasigroups
JO  - Matematičeskie zametki
PY  - 2022
SP  - 8
EP  - 14
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/
LA  - ru
ID  - MZM_2022_111_1_a1
ER  - 
%0 Journal Article
%A A. V. Galatenko
%A V. V. Galatenko
%A A. E. Pankratiev
%T Strong Polynomial Completeness of Almost All Quasigroups
%J Matematičeskie zametki
%D 2022
%P 8-14
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/
%G ru
%F MZM_2022_111_1_a1
A. V. Galatenko; V. V. Galatenko; A. E. Pankratiev. Strong Polynomial Completeness of Almost All Quasigroups. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 8-14. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/