Strong Polynomial Completeness of Almost All Quasigroups
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 8-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is proved that almost all quasigroups are strongly polynomially complete, i.e., are not isotopic to quasigroups that are not polynomially complete.
Mots-clés : quasigroup
Keywords: isotopy, simplicity, affinity, polynomial completeness.
@article{MZM_2022_111_1_a1,
     author = {A. V. Galatenko and V. V. Galatenko and A. E. Pankratiev},
     title = {Strong {Polynomial} {Completeness} of {Almost} {All} {Quasigroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {8--14},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/}
}
TY  - JOUR
AU  - A. V. Galatenko
AU  - V. V. Galatenko
AU  - A. E. Pankratiev
TI  - Strong Polynomial Completeness of Almost All Quasigroups
JO  - Matematičeskie zametki
PY  - 2022
SP  - 8
EP  - 14
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/
LA  - ru
ID  - MZM_2022_111_1_a1
ER  - 
%0 Journal Article
%A A. V. Galatenko
%A V. V. Galatenko
%A A. E. Pankratiev
%T Strong Polynomial Completeness of Almost All Quasigroups
%J Matematičeskie zametki
%D 2022
%P 8-14
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/
%G ru
%F MZM_2022_111_1_a1
A. V. Galatenko; V. V. Galatenko; A. E. Pankratiev. Strong Polynomial Completeness of Almost All Quasigroups. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 8-14. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/

[1] M. M. Glukhov, “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2008, no. 2, 28–32 | Zbl

[2] G. Horváth, Gh. L. Nehaniv, Cs. Szabó, “An assertion concerning functionally complete algebras and NP-completeness”, Theoret. Comput. Sci., 407 (2008), 591–595 | MR | Zbl

[3] P. J. Cameron, “Almost all quasigroups have rank 2”, Discrete Math., 106–107 (1992), 111–115 | DOI | Zbl

[4] A. Salomaa, “Some completeness criteria for sets of functions over a finite domain. II”, Ann. Univ. Turku. Ser. A I, 63 (1963) | MR | Zbl

[5] M. T. Jacobson, P. Matthews, “Generating uniformly distributed random Latin squares”, J. Combin. Designs, 4:6 (1996), 405–437 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[6] A. V. Galatenko, A. E. Pankratiev, “The complexity of checking the polynomial completeness of finite quasigroups”, Discrete Math. Appl., 30:3 (2020), 169–175 | DOI | Zbl

[7] T. Kepka, “A note on simple quasigroups”, Acta Univ. Carolin. Math. Phys., 19:2 (1978), 59–60 | MR | Zbl

[8] A. V. Galatenko, A. E. Pankratev, S. B. Rodin, “O polinomialno polnykh kvazigruppakh prostogo poryadka”, Algebra i logika, 57:5 (2018), 509–521 | DOI

[9] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2010

[10] V. A. Artamonov, S. Chakrabarti, S. K. Pal, “Characterizations of highly non-associative quasigroups and associative triples”, Quasigroups Related Systems, 25 (2017), 1–19 | MR | Zbl

[11] J. Hagemann, C. Herrmann, “Arithmetical locally equational classes and representation of partial functions”, Universal Algebra, Colloq. Math. Soc., 29, Soc. János Bolyai, Amsterdam, 1982, 345–360 | MR | Zbl

[12] H. J. Ryser, “Permanents and systems of distinct representatives”, Proceedings of the Conference on Combinatorial Mathematics and Its Applications, Univ. of North Carolina, Chapel Hill, NC, 1967, 55–70