Strong Polynomial Completeness of Almost All Quasigroups
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 8-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, it is proved that almost all quasigroups are strongly polynomially complete, i.e., are not isotopic to quasigroups that are not polynomially complete.
Mots-clés : quasigroup
Keywords: isotopy, simplicity, affinity, polynomial completeness.
@article{MZM_2022_111_1_a1,
     author = {A. V. Galatenko and V. V. Galatenko and A. E. Pankratiev},
     title = {Strong {Polynomial} {Completeness} of {Almost} {All} {Quasigroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {8--14},
     year = {2022},
     volume = {111},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/}
}
TY  - JOUR
AU  - A. V. Galatenko
AU  - V. V. Galatenko
AU  - A. E. Pankratiev
TI  - Strong Polynomial Completeness of Almost All Quasigroups
JO  - Matematičeskie zametki
PY  - 2022
SP  - 8
EP  - 14
VL  - 111
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/
LA  - ru
ID  - MZM_2022_111_1_a1
ER  - 
%0 Journal Article
%A A. V. Galatenko
%A V. V. Galatenko
%A A. E. Pankratiev
%T Strong Polynomial Completeness of Almost All Quasigroups
%J Matematičeskie zametki
%D 2022
%P 8-14
%V 111
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/
%G ru
%F MZM_2022_111_1_a1
A. V. Galatenko; V. V. Galatenko; A. E. Pankratiev. Strong Polynomial Completeness of Almost All Quasigroups. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 8-14. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a1/

[1] M. M. Glukhov, “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2008, no. 2, 28–32 | Zbl

[2] G. Horváth, Gh. L. Nehaniv, Cs. Szabó, “An assertion concerning functionally complete algebras and NP-completeness”, Theoret. Comput. Sci., 407 (2008), 591–595 | MR | Zbl

[3] P. J. Cameron, “Almost all quasigroups have rank 2”, Discrete Math., 106–107 (1992), 111–115 | DOI | Zbl

[4] A. Salomaa, “Some completeness criteria for sets of functions over a finite domain. II”, Ann. Univ. Turku. Ser. A I, 63 (1963) | MR | Zbl

[5] M. T. Jacobson, P. Matthews, “Generating uniformly distributed random Latin squares”, J. Combin. Designs, 4:6 (1996), 405–437 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[6] A. V. Galatenko, A. E. Pankratiev, “The complexity of checking the polynomial completeness of finite quasigroups”, Discrete Math. Appl., 30:3 (2020), 169–175 | DOI | Zbl

[7] T. Kepka, “A note on simple quasigroups”, Acta Univ. Carolin. Math. Phys., 19:2 (1978), 59–60 | MR | Zbl

[8] A. V. Galatenko, A. E. Pankratev, S. B. Rodin, “O polinomialno polnykh kvazigruppakh prostogo poryadka”, Algebra i logika, 57:5 (2018), 509–521 | DOI

[9] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2010

[10] V. A. Artamonov, S. Chakrabarti, S. K. Pal, “Characterizations of highly non-associative quasigroups and associative triples”, Quasigroups Related Systems, 25 (2017), 1–19 | MR | Zbl

[11] J. Hagemann, C. Herrmann, “Arithmetical locally equational classes and representation of partial functions”, Universal Algebra, Colloq. Math. Soc., 29, Soc. János Bolyai, Amsterdam, 1982, 345–360 | MR | Zbl

[12] H. J. Ryser, “Permanents and systems of distinct representatives”, Proceedings of the Conference on Combinatorial Mathematics and Its Applications, Univ. of North Carolina, Chapel Hill, NC, 1967, 55–70