Approximation by Simple Partial Fractions: Universal Sets of Poles
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

For unbounded subsets E of the complex plane, we obtain conditions that are necessary or sufficient so that, for any compact set K that does not divide the plane, the simple partial fractions with poles in $E\setminus K$ approximate any function continuous on K and holomorphic inside K with an arbitrary accuracy uniformly on K.
Keywords: approximation
Mots-clés : simple partial fractions, limit directions.
@article{MZM_2022_111_1_a0,
     author = {P. A. Borodin},
     title = {Approximation by {Simple} {Partial} {Fractions:} {Universal} {Sets} of {Poles}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a0/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Approximation by Simple Partial Fractions: Universal Sets of Poles
JO  - Matematičeskie zametki
PY  - 2022
SP  - 3
EP  - 7
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a0/
LA  - ru
ID  - MZM_2022_111_1_a0
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Approximation by Simple Partial Fractions: Universal Sets of Poles
%J Matematičeskie zametki
%D 2022
%P 3-7
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a0/
%G ru
%F MZM_2022_111_1_a0
P. A. Borodin. Approximation by Simple Partial Fractions: Universal Sets of Poles. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 3-7. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a0/

[1] V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Ekstremalnye i approksimativnye svoistva naiprosteishikh drobei”, Izv. vuzov. Matem., 2018, no. 12, 9–49 | Zbl

[2] V. I. Danchenko, D. Ya. Danchenko, “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | DOI | MR | Zbl

[3] J. Korevaar, “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. of Math. (2), 80:2 (1964), 403–410 | DOI | Zbl

[4] P. A. Borodin, “Priblizhenie naiprosteishimi drobyami s ogranicheniem na polyusy”, Matem. sb., 203:11 (2012), 23–40 | DOI | MR | Zbl

[5] P. A. Borodin, “Priblizhenie naiprosteishimi drobyami s ogranicheniem na polyusy. II”, Matem. sb., 207:3 (2016), 19–30 | DOI | MR | Zbl

[6] J. M. Elkins, “Approximation by polynomials with restricted zeros”, J. Math. Anal. Appl., 25:2 (1969), 321–336 | DOI | Zbl

[7] P. A. Borodin, K. S. Shklyaev, “Priblizhenie naiprosteishimi drobyami v neogranichennykh oblastyakh”, Matem. sb., 212:4 (2021), 3–28 | DOI | Zbl

[8] Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961