The Moutard Transformation for the Davey--Stewartson~II Equation and Its Geometrical Meaning
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 751-765.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Moutard transformation for the solutions of the Davey–Stewartson II equation is constructed. It is geometrically interpreted using the spinor (Weierstrass) representation of surfaces in four-dimensional Euclidean space. Examples of solutions that have smooth fast decaying initial data and lose regularity in finite time are constructed by using the Moutard transformation and minimal surfaces.
Keywords: Davey–Stewartson equation, surfaces in four-dimensional space.
Mots-clés : Moutard transformation
@article{MZM_2021_110_5_a9,
     author = {I. A. Taimanov},
     title = {The {Moutard} {Transformation} for the {Davey--Stewartson~II} {Equation} and {Its} {Geometrical} {Meaning}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {751--765},
     publisher = {mathdoc},
     volume = {110},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a9/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - The Moutard Transformation for the Davey--Stewartson~II Equation and Its Geometrical Meaning
JO  - Matematičeskie zametki
PY  - 2021
SP  - 751
EP  - 765
VL  - 110
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a9/
LA  - ru
ID  - MZM_2021_110_5_a9
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T The Moutard Transformation for the Davey--Stewartson~II Equation and Its Geometrical Meaning
%J Matematičeskie zametki
%D 2021
%P 751-765
%V 110
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a9/
%G ru
%F MZM_2021_110_5_a9
I. A. Taimanov. The Moutard Transformation for the Davey--Stewartson~II Equation and Its Geometrical Meaning. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 751-765. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a9/

[1] A. Davey, K. Stewartson, “On three–dimensional packets of surface waves”, Proc. Roy. Soc. London Ser. A, 338 (1974), 101–110 | DOI | MR | Zbl

[2] R. M. Matuev, I. A. Taimanov, “Preobrazovanie Mutara dvumernykh operatorov Diraka i konformnaya geometriya poverkhnostei v chetyrekhmernom prostranstve”, Matem. zametki, 100:6 (2016), 868–880 | DOI | MR | Zbl

[3] D. Yu, Q. P. Liu, Sh. Wang, “Darboux transformation for the modified Veselov–Novikov equation”, J. Phys. A, 35:16 (2001), 3779–3785 | MR

[4] B. G. Konopelchenko, “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96:1 (1996), 9–51 | DOI | MR | Zbl

[5] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, Geometry, and Topology: On the Crossroad, Amer. Math. Soc. Transl., Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 133–151 | MR | Zbl

[6] I. A. Taimanov, “Dvumernyi operator Diraka i teoriya poverkhnostei”, UMN, 61:1 (367) (2006), 85–164 | DOI | MR | Zbl

[7] I. A. Taimanov, “Surfaces in the four-space and the Davey–Stewartson equations”, J. Geom. Phys., 56:8 (2006), 1235–1256 | DOI | MR | Zbl

[8] B. G. Konopelchenko, “Weierstrass representations for surfaces in $4D$ spaces and their integrable deformations via DS hierarchy”, Ann. Global Anal. Geom., 18:1 (2000), 61–74 | DOI | MR | Zbl

[9] T. Ozawa, “Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems”, Proc. Roy. Soc. London Ser. A, 436:1897 (1992), 345–349 | MR | Zbl

[10] I. A. Taimanov, “Preobrazovanie Mutara dvumernykh operatorov Diraka i geometriya Mebiusa”, Matem. zametki, 97:1 (2015), 129–141 | DOI | MR | Zbl

[11] I. A. Taimanov, “Razrushayuschiesya resheniya modifitsirovannogo uravneniya Veselova–Novikova i minimalnye poverkhnosti”, TMF, 182:2 (2015), 213–222 | DOI | MR | Zbl

[12] C. Klein, J.-C. Saut, “IST versus PDE: a comparative study”, Hamiltonian Partial Differential Equations and Applications, Fields Inst. Commun., 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, 383–449 | MR | Zbl

[13] S. B. Leble, M. A. Salle, A. V. Yurov, “Darboux transforms for Davey–Stewartson equations and solitons in multidimensions”, Inverse Problems, 8:2 (1992), 207–218 | DOI | MR | Zbl

[14] V. B. Matveev, V. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991 | MR | Zbl

[15] I. A. Taimanov, S. P. Tsarev, “Dvumernye operatory Shrëdingera s bystro ubyvayuschim ratsionalnym potentsialom i mnogomernym $L_2$-yadrom”, UMN, 62:3 (375) (2007), 217–218 | DOI | MR | Zbl

[16] I. A. Taimanov, S. P. Tsarev, “Raspadayuschiesya resheniya uravneniya Veselova–Novikova”, Dokl. AN, 420:6 (2008), 744–745

[17] R. G. Novikov, I. A. Taimanov, S. P. Tsarev, “Dvumernye potentsialy Vignera–fon Neimana s kratnym polozhitelnym sobstvennym znacheniem”, Funkts. analiz i ego pril., 48:4 (2014), 74–77 | DOI | MR | Zbl

[18] P. G. Grinevich, R. G. Novikov, “Moutard transform for generalized analytic functions”, J. Geom. Anal., 26:4 (2016), 2984–2995 | DOI | MR | Zbl

[19] P. G. Grinevich, R. G. Novikov, “Moutard transforms for the conductivity equation”, Lett. Math. Phys., 109:10 (2019), 2209–2222 | DOI | MR | Zbl

[20] P. G. Grinevich, R. G. Novikov, “Creation and annihilation of point-potentials using Moutard-type transform in spectral variable”, J. Math. Phys., 61:9 (2020), 093501 | DOI | MR | Zbl