The Moutard Transformation for the Davey–Stewartson II Equation and Its Geometrical Meaning
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 751-765 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Moutard transformation for the solutions of the Davey–Stewartson II equation is constructed. It is geometrically interpreted using the spinor (Weierstrass) representation of surfaces in four-dimensional Euclidean space. Examples of solutions that have smooth fast decaying initial data and lose regularity in finite time are constructed by using the Moutard transformation and minimal surfaces.
Keywords: Davey–Stewartson equation, surfaces in four-dimensional space.
Mots-clés : Moutard transformation
@article{MZM_2021_110_5_a9,
     author = {I. A. Taimanov},
     title = {The {Moutard} {Transformation} for the {Davey{\textendash}Stewartson~II} {Equation} and {Its} {Geometrical} {Meaning}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {751--765},
     year = {2021},
     volume = {110},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a9/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - The Moutard Transformation for the Davey–Stewartson II Equation and Its Geometrical Meaning
JO  - Matematičeskie zametki
PY  - 2021
SP  - 751
EP  - 765
VL  - 110
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a9/
LA  - ru
ID  - MZM_2021_110_5_a9
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T The Moutard Transformation for the Davey–Stewartson II Equation and Its Geometrical Meaning
%J Matematičeskie zametki
%D 2021
%P 751-765
%V 110
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a9/
%G ru
%F MZM_2021_110_5_a9
I. A. Taimanov. The Moutard Transformation for the Davey–Stewartson II Equation and Its Geometrical Meaning. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 751-765. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a9/

[1] A. Davey, K. Stewartson, “On three–dimensional packets of surface waves”, Proc. Roy. Soc. London Ser. A, 338 (1974), 101–110 | DOI | MR | Zbl

[2] R. M. Matuev, I. A. Taimanov, “Preobrazovanie Mutara dvumernykh operatorov Diraka i konformnaya geometriya poverkhnostei v chetyrekhmernom prostranstve”, Matem. zametki, 100:6 (2016), 868–880 | DOI | MR | Zbl

[3] D. Yu, Q. P. Liu, Sh. Wang, “Darboux transformation for the modified Veselov–Novikov equation”, J. Phys. A, 35:16 (2001), 3779–3785 | MR

[4] B. G. Konopelchenko, “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96:1 (1996), 9–51 | DOI | MR | Zbl

[5] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, Geometry, and Topology: On the Crossroad, Amer. Math. Soc. Transl., Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 133–151 | MR | Zbl

[6] I. A. Taimanov, “Dvumernyi operator Diraka i teoriya poverkhnostei”, UMN, 61:1 (367) (2006), 85–164 | DOI | MR | Zbl

[7] I. A. Taimanov, “Surfaces in the four-space and the Davey–Stewartson equations”, J. Geom. Phys., 56:8 (2006), 1235–1256 | DOI | MR | Zbl

[8] B. G. Konopelchenko, “Weierstrass representations for surfaces in $4D$ spaces and their integrable deformations via DS hierarchy”, Ann. Global Anal. Geom., 18:1 (2000), 61–74 | DOI | MR | Zbl

[9] T. Ozawa, “Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems”, Proc. Roy. Soc. London Ser. A, 436:1897 (1992), 345–349 | MR | Zbl

[10] I. A. Taimanov, “Preobrazovanie Mutara dvumernykh operatorov Diraka i geometriya Mebiusa”, Matem. zametki, 97:1 (2015), 129–141 | DOI | MR | Zbl

[11] I. A. Taimanov, “Razrushayuschiesya resheniya modifitsirovannogo uravneniya Veselova–Novikova i minimalnye poverkhnosti”, TMF, 182:2 (2015), 213–222 | DOI | MR | Zbl

[12] C. Klein, J.-C. Saut, “IST versus PDE: a comparative study”, Hamiltonian Partial Differential Equations and Applications, Fields Inst. Commun., 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, 383–449 | MR | Zbl

[13] S. B. Leble, M. A. Salle, A. V. Yurov, “Darboux transforms for Davey–Stewartson equations and solitons in multidimensions”, Inverse Problems, 8:2 (1992), 207–218 | DOI | MR | Zbl

[14] V. B. Matveev, V. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991 | MR | Zbl

[15] I. A. Taimanov, S. P. Tsarev, “Dvumernye operatory Shrëdingera s bystro ubyvayuschim ratsionalnym potentsialom i mnogomernym $L_2$-yadrom”, UMN, 62:3 (375) (2007), 217–218 | DOI | MR | Zbl

[16] I. A. Taimanov, S. P. Tsarev, “Raspadayuschiesya resheniya uravneniya Veselova–Novikova”, Dokl. AN, 420:6 (2008), 744–745

[17] R. G. Novikov, I. A. Taimanov, S. P. Tsarev, “Dvumernye potentsialy Vignera–fon Neimana s kratnym polozhitelnym sobstvennym znacheniem”, Funkts. analiz i ego pril., 48:4 (2014), 74–77 | DOI | MR | Zbl

[18] P. G. Grinevich, R. G. Novikov, “Moutard transform for generalized analytic functions”, J. Geom. Anal., 26:4 (2016), 2984–2995 | DOI | MR | Zbl

[19] P. G. Grinevich, R. G. Novikov, “Moutard transforms for the conductivity equation”, Lett. Math. Phys., 109:10 (2019), 2209–2222 | DOI | MR | Zbl

[20] P. G. Grinevich, R. G. Novikov, “Creation and annihilation of point-potentials using Moutard-type transform in spectral variable”, J. Math. Phys., 61:9 (2020), 093501 | DOI | MR | Zbl