Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_5_a6, author = {Z. A. Kusraeva}, title = {Regularity of {Continuous} {Multilinear} {Operators} and {Homogeneous} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {726--735}, publisher = {mathdoc}, volume = {110}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a6/} }
Z. A. Kusraeva. Regularity of Continuous Multilinear Operators and Homogeneous Polynomials. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 726-735. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a6/
[1] Z. A. Kusraeva, “Powers of quasi-Banach lattices and orthogonally additive polynomials”, J. Math. Anal. Appl., 458:1 (2018), 767–780 | DOI | MR | Zbl
[2] Hong Yun Xiong, “On whether or not $\mathcal{L}(E,F)=\mathcal{L}^r(E,F)$ for some classical Banach lattices $E$ and $F$”, Indag. Math., 1984, no. 46, 267–282 | MR | Zbl
[3] L. V. Kantorovich, B. Z. Vulikh, “Sur la representation des operations lineares”, Compositio Math., 5 (1937), 119–165 | MR
[4] B. Z. Vulikh, Vvedenie v teoriyu poluuporyadochennykh prostranstv, GIFML, M., 1961 | MR | Zbl
[5] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York, 1985 | MR | Zbl
[6] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, 1991 | MR | Zbl
[7] Zh. Synnachke, “Ob operatore, sopryazhennom k regulyarnomu, i nekotorykh ego primeneniyakh k voprosu o polnoi nepreryvnosti i slaboi polnoi nepreryvnosti regulyarnykh operatorov”, Vestn. Leningradskogo un-ta. Ser. 1. Matem., mekh., astron., 1972, no. 1, 60–69
[8] Yu. A. Abramovich, A. W. Wickstead, “When each continuous operator is regular. II”, Indag. Math. (N.S.), 8:3 (1997), 281–294 | DOI | MR | Zbl
[9] Q. Bu, G. Buskes, “Polynomials on Banach lattices and positive tensor products”, J. Math. Anal. Appl., 388 (2012), 845–862 | DOI | MR | Zbl
[10] J. Loane, Polynomials on Riesz Spaces, Thesis, Department of Mathematics, National University of Ireland, Galway, 2007
[11] S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer-Verlag, Berlin, 1999 | MR | Zbl
[12] Y. A. Abramovich, C. D. Aliprantis, “Positive operators”, Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001, 85–122 | MR
[13] D. H. Fremlin, Measure Theory. Vol. 3. Measure Algebras, Cambridge Univ. Press, Cambridge, 2002 | MR
[14] Q Bu, G. Buskes, Y. Li, “Abstract $L$- and abstract $M$-spaces of polynomials on Banach lattices”, Proc. Edinb. Math. Soc. (2), 58:3 (2015), 617–629 | DOI | MR | Zbl
[15] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer-Verlag, London, 2002 | MR | Zbl
[16] Z. A. Kusraeva, “O predstavlenii ortogonalno additivnykh polinomov”, Sib. matem. zhurn., 52:2 (2011), 315–325 | MR | Zbl
[17] Z. A. Kusraeva, S. N. Siukaev, “Nekotorye svoistva ortogonalno additivnykh polinomov v banakhovykh reshetkakh”, Vladikavk. matem. zhurn., 22:4 (2020), 92–103 | DOI | Zbl
[18] D. H. Fremlin, “Tensor product of Banach lattices”, Math. Ann., 211 (1974), 87–106 | DOI | MR | Zbl
[19] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin, 1974 | MR | Zbl
[20] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, London, 1974 | MR | Zbl
[21] Yu. A. Abramovich, A. W. Wickstead, “The regularity of order bounded operators into $C(K)$. II”, Quart. J. Math. Oxford Ser. (2), 44:175 (1993), 257–270 | DOI | MR | Zbl
[22] D. H. Fremlin, “Tensor product of Archimedean vector lattices”, Amer. J. Math., 94 (1972), 777–798 | DOI | MR | Zbl
[23] A. W. Wickstead, “The regularity of order bounded operators into $C(K)$”, Quart. J. Math. Oxford Ser. (2), 41:163 (1990), 359–368 | DOI | MR | Zbl
[24] K. Yu. Ilina, Z. A. Kusraeva, “O prodolzhenii polozhitelnykh operatorov”, Sib. matem. zhurn., 61:2 (2020), 330–336 | DOI | Zbl
[25] A. A. Gelieva, Z. A. Kusraeva, “O mazhorirovannom prodolzhenii lineinykh operatorov”, Matem. zametki, 108:2 (2020), 190–199 | DOI | MR | Zbl