Regularity of Continuous Multilinear Operators and Homogeneous Polynomials
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 726-735.

Voir la notice de l'article provenant de la source Math-Net.Ru

Regular multilinear operators and regular homogeneous polynomials acting between Banach lattices are automatically continuous, but the converse, in general, is not true. The problem arises of characterizing Banach lattices for which the classes of continuous and regular multilinear operators (or homogeneous polynomials) coincide. The aim of this note is to extend two results in this direction, earlier obtained for linear operators, to the above-mentioned classes of operators and polynomials. The main method is linearization with the use of the Fremlin tensor product of Banach lattices.
Keywords: Banach lattice, Levi property, multilinear operator, homogeneous polynomial, Fremlin tensor product, linearization.
@article{MZM_2021_110_5_a6,
     author = {Z. A. Kusraeva},
     title = {Regularity of {Continuous} {Multilinear} {Operators} and {Homogeneous} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {726--735},
     publisher = {mathdoc},
     volume = {110},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a6/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
TI  - Regularity of Continuous Multilinear Operators and Homogeneous Polynomials
JO  - Matematičeskie zametki
PY  - 2021
SP  - 726
EP  - 735
VL  - 110
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a6/
LA  - ru
ID  - MZM_2021_110_5_a6
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%T Regularity of Continuous Multilinear Operators and Homogeneous Polynomials
%J Matematičeskie zametki
%D 2021
%P 726-735
%V 110
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a6/
%G ru
%F MZM_2021_110_5_a6
Z. A. Kusraeva. Regularity of Continuous Multilinear Operators and Homogeneous Polynomials. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 726-735. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a6/

[1] Z. A. Kusraeva, “Powers of quasi-Banach lattices and orthogonally additive polynomials”, J. Math. Anal. Appl., 458:1 (2018), 767–780 | DOI | MR | Zbl

[2] Hong Yun Xiong, “On whether or not $\mathcal{L}(E,F)=\mathcal{L}^r(E,F)$ for some classical Banach lattices $E$ and $F$”, Indag. Math., 1984, no. 46, 267–282 | MR | Zbl

[3] L. V. Kantorovich, B. Z. Vulikh, “Sur la representation des operations lineares”, Compositio Math., 5 (1937), 119–165 | MR

[4] B. Z. Vulikh, Vvedenie v teoriyu poluuporyadochennykh prostranstv, GIFML, M., 1961 | MR | Zbl

[5] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York, 1985 | MR | Zbl

[6] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, 1991 | MR | Zbl

[7] Zh. Synnachke, “Ob operatore, sopryazhennom k regulyarnomu, i nekotorykh ego primeneniyakh k voprosu o polnoi nepreryvnosti i slaboi polnoi nepreryvnosti regulyarnykh operatorov”, Vestn. Leningradskogo un-ta. Ser. 1. Matem., mekh., astron., 1972, no. 1, 60–69

[8] Yu. A. Abramovich, A. W. Wickstead, “When each continuous operator is regular. II”, Indag. Math. (N.S.), 8:3 (1997), 281–294 | DOI | MR | Zbl

[9] Q. Bu, G. Buskes, “Polynomials on Banach lattices and positive tensor products”, J. Math. Anal. Appl., 388 (2012), 845–862 | DOI | MR | Zbl

[10] J. Loane, Polynomials on Riesz Spaces, Thesis, Department of Mathematics, National University of Ireland, Galway, 2007

[11] S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer-Verlag, Berlin, 1999 | MR | Zbl

[12] Y. A. Abramovich, C. D. Aliprantis, “Positive operators”, Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001, 85–122 | MR

[13] D. H. Fremlin, Measure Theory. Vol. 3. Measure Algebras, Cambridge Univ. Press, Cambridge, 2002 | MR

[14] Q Bu, G. Buskes, Y. Li, “Abstract $L$- and abstract $M$-spaces of polynomials on Banach lattices”, Proc. Edinb. Math. Soc. (2), 58:3 (2015), 617–629 | DOI | MR | Zbl

[15] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer-Verlag, London, 2002 | MR | Zbl

[16] Z. A. Kusraeva, “O predstavlenii ortogonalno additivnykh polinomov”, Sib. matem. zhurn., 52:2 (2011), 315–325 | MR | Zbl

[17] Z. A. Kusraeva, S. N. Siukaev, “Nekotorye svoistva ortogonalno additivnykh polinomov v banakhovykh reshetkakh”, Vladikavk. matem. zhurn., 22:4 (2020), 92–103 | DOI | Zbl

[18] D. H. Fremlin, “Tensor product of Banach lattices”, Math. Ann., 211 (1974), 87–106 | DOI | MR | Zbl

[19] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin, 1974 | MR | Zbl

[20] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, London, 1974 | MR | Zbl

[21] Yu. A. Abramovich, A. W. Wickstead, “The regularity of order bounded operators into $C(K)$. II”, Quart. J. Math. Oxford Ser. (2), 44:175 (1993), 257–270 | DOI | MR | Zbl

[22] D. H. Fremlin, “Tensor product of Archimedean vector lattices”, Amer. J. Math., 94 (1972), 777–798 | DOI | MR | Zbl

[23] A. W. Wickstead, “The regularity of order bounded operators into $C(K)$”, Quart. J. Math. Oxford Ser. (2), 41:163 (1990), 359–368 | DOI | MR | Zbl

[24] K. Yu. Ilina, Z. A. Kusraeva, “O prodolzhenii polozhitelnykh operatorov”, Sib. matem. zhurn., 61:2 (2020), 330–336 | DOI | Zbl

[25] A. A. Gelieva, Z. A. Kusraeva, “O mazhorirovannom prodolzhenii lineinykh operatorov”, Matem. zametki, 108:2 (2020), 190–199 | DOI | MR | Zbl