Regularity of Continuous Multilinear Operators and Homogeneous Polynomials
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 726-735

Voir la notice de l'article provenant de la source Math-Net.Ru

Regular multilinear operators and regular homogeneous polynomials acting between Banach lattices are automatically continuous, but the converse, in general, is not true. The problem arises of characterizing Banach lattices for which the classes of continuous and regular multilinear operators (or homogeneous polynomials) coincide. The aim of this note is to extend two results in this direction, earlier obtained for linear operators, to the above-mentioned classes of operators and polynomials. The main method is linearization with the use of the Fremlin tensor product of Banach lattices.
Keywords: Banach lattice, Levi property, multilinear operator, homogeneous polynomial, Fremlin tensor product, linearization.
@article{MZM_2021_110_5_a6,
     author = {Z. A. Kusraeva},
     title = {Regularity of {Continuous} {Multilinear} {Operators} and {Homogeneous} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {726--735},
     publisher = {mathdoc},
     volume = {110},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a6/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
TI  - Regularity of Continuous Multilinear Operators and Homogeneous Polynomials
JO  - Matematičeskie zametki
PY  - 2021
SP  - 726
EP  - 735
VL  - 110
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a6/
LA  - ru
ID  - MZM_2021_110_5_a6
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%T Regularity of Continuous Multilinear Operators and Homogeneous Polynomials
%J Matematičeskie zametki
%D 2021
%P 726-735
%V 110
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a6/
%G ru
%F MZM_2021_110_5_a6
Z. A. Kusraeva. Regularity of Continuous Multilinear Operators and Homogeneous Polynomials. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 726-735. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a6/