Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_5_a5, author = {S. A. Kaschenko}, title = {Dynamics of {Spatially} {Distributed} {Chains} of {Coupled} {Systems} of {Equations} in a {Two-Dimensional} {Domain}}, journal = {Matemati\v{c}eskie zametki}, pages = {715--725}, publisher = {mathdoc}, volume = {110}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a5/} }
TY - JOUR AU - S. A. Kaschenko TI - Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain JO - Matematičeskie zametki PY - 2021 SP - 715 EP - 725 VL - 110 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a5/ LA - ru ID - MZM_2021_110_5_a5 ER -
S. A. Kaschenko. Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 715-725. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a5/
[1] J. Maurer, A. Libchaber, J. Physique Lett., 41 (1980), 515–518 | DOI
[2] S. P. Kuznetsov, V. I. Ponomarenko, E. P. Seleznev, “Avtonomnaya sistema – generator giperbolicheskogo khaosa. Skhemotekhnicheskoe modelirovanie i eksperiment”, Izv. Vuzov. Prikladnaya nelineinaya dinamika, 21:5 (2013), 17–30
[3] E. Brun, B. Derighette, D. Meier, R. Holzner, M. Raveni, “Observation of order and chaos in a nuclear spin-flip laser”, J. Opt. Soc. Am. B, 2:1 (1985), 156–167 | DOI
[4] D. Dangoisse, P. Glorieux, D. Hennequin, “Chaos in a CO$_2$ laser with modulated parameters: Experiments and numerical simulations”, Phys. Rev. A., 36 (1987), 4775 | DOI
[5] Y. K. Chembo, M. Jacquot, J. M. Dudley, L. Larger, “Ikeda-like chaos on a dynamically filtered supercontinuum light source”, Phys. Rev. A, 94 (2016), 023847 | DOI
[6] J. M. T. Thompson, H. B. Stewart, Nonlinear Dynamics and Chaos. Geometrical Methods for Engineers and Scientists, John Wiley Sons, Chichester, 1986 | MR | Zbl
[7] J. Foss, A. Longtin, B. Mensour, J. Milton, “Multistability and delayed recurrent loops”, Phys. Rev. Lett., 76 (1996), 708 | DOI
[8] I. V. Sysoev, V. I. Ponomarenko, D. D. Kulminskiy, M. D. Prokhorov, “Recovery of couplings and parameters of elements in networks of time-delay systems from time series”, Phys. Rev. E, 94 (2016), 052207 | DOI
[9] V. I. Ponomarenko, D. D. Kulminskiy, M. D. Prokhorov, “Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field”, Phys. Rev. E, 96 (2017), 022209 | DOI
[10] A. S. Karavaev, Yu. M. Ishbulatov, A. R. Kiselev, V. I. Ponomarenko, M. D. Prokhorov, S. A. Mironov, V. A. Shvarts, V. I. Gridnev, B. P. Bezruchko, “Model serdechno-sosudistoi sistemy cheloveka s avtonomnym konturom regulyatsii srednego arterialnogo davleniya”, Fiziologiya cheloveka, 43:1 (2017), 70–80
[11] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984 | MR | Zbl
[12] Y. Kuramoto, D. Battogtokh, “Coexisting of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385
[13] G. V. Osipov, J. Kurths, Ch. Zhou, Synchronization in Oscillatory Networks, Springer-Verlag, Berlin, 2007 | MR | Zbl
[14] V. S. Afraimovich, V. I. Nekorkin, G. V. Osipov, V. D. Shalfeev, Stability, Structures and Chaos in Nonlinear Synchronization Networks, World Sci. Publ., River Edge, NJ, 1994 | MR | Zbl
[15] A. K. Kryukov, G. V. Osipov, A. V. Polovinkin, “Multistabilnost sinkhronnykh rezhimov v ansamblyakh neidentichnykh ostsillyatolrov: tsepochka i reshetka svyazannykh elementov”, Izv. Vuzov. Prikladnaya nelineinaya dinamika, 17:2 (2009), 29–36
[16] A. K. Kryukov, O. I. Kanakov, G. V. Osipov, “Volny sinkhronizatsii v ansamblyakh slabonelineinykh ostsillyatorov”, Izv. Vuzov. Prikladnaya nelineinaya dinamika, 17:1 (2009), 13–36
[17] A. S. Pikovsky, M. G. Rosenblum, J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, Cambridge, 2001 | DOI | Zbl
[18] I. S. Kashchenko, S. A. Kashchenko, “Dynamics of the Kuramoto equation with spatially distributed control”, Commun. Nonlinear Sci. Numer. Simul., 34 (2016), 123–129 | DOI | MR | Zbl
[19] S. A. Kaschenko, “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1052 | MR | Zbl
[20] S. A. Kaschenko, “Normalization in the systems with small diffusion”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:6 (1996), 1093–1109 | MR | Zbl
[21] S. A. Kaschenko, “Prosteishie kriticheskie sluchai v dinamike nelineinykh sistem s maloi diffuziei”, Tr. MMO, 79, no. 1, MTsNMO, M., 2018, 97–115
[22] S. A. Kaschenko, “Prostranstvennye osobennosti vysokomodovykh bifurkatsii dvukhkomponentnykh sistem s maloi diffuziei”, Differents. uravneniya, 25:2 (1989), 262–270 | MR | Zbl
[23] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR
[24] I. S. Kashchenko, S. A. Kashchenko, “Infinite process of forward and backward bifurcations in the logistic equation with two delays”, Nonlinear Phenomena in Complex Systems, 22:4 (2019), 407–412 | DOI | Zbl