Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 715-725.

Voir la notice de l'article provenant de la source Math-Net.Ru

The local dynamics of coupled identical nonlinear systems of second-order differential equations in a two-dimensional domain is studied. The main assumption is that the number of such equations is quite large. This makes it possible to move to a system with two continuous spatial variables. Critical cases in the problem of stability of the equilibrium state are highlighted. They all are of infinite dimension, i.e., the infinitely many roots of the characteristic equation for the linearized problem tend to the imaginary axis as the natural small parameter tends to zero. Special nonlinear partial differential equations are constructed whose nonlocal dynamics describes the behavior of the initial system in a neighborhood of the equilibrium state, which plays the role of a normal form. It should especially be noted that the constructed partial differential systems contain four spatial variables with boundary conditions for each of them.
Keywords: dynamics, stability, normal form, asymptotics of solutions, chains of nonlinear systems.
@article{MZM_2021_110_5_a5,
     author = {S. A. Kaschenko},
     title = {Dynamics of {Spatially} {Distributed} {Chains} of {Coupled} {Systems} of {Equations} in a {Two-Dimensional} {Domain}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {715--725},
     publisher = {mathdoc},
     volume = {110},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a5/}
}
TY  - JOUR
AU  - S. A. Kaschenko
TI  - Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain
JO  - Matematičeskie zametki
PY  - 2021
SP  - 715
EP  - 725
VL  - 110
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a5/
LA  - ru
ID  - MZM_2021_110_5_a5
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%T Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain
%J Matematičeskie zametki
%D 2021
%P 715-725
%V 110
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a5/
%G ru
%F MZM_2021_110_5_a5
S. A. Kaschenko. Dynamics of Spatially Distributed Chains of Coupled Systems of Equations in a Two-Dimensional Domain. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 715-725. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a5/

[1] J. Maurer, A. Libchaber, J. Physique Lett., 41 (1980), 515–518 | DOI

[2] S. P. Kuznetsov, V. I. Ponomarenko, E. P. Seleznev, “Avtonomnaya sistema – generator giperbolicheskogo khaosa. Skhemotekhnicheskoe modelirovanie i eksperiment”, Izv. Vuzov. Prikladnaya nelineinaya dinamika, 21:5 (2013), 17–30

[3] E. Brun, B. Derighette, D. Meier, R. Holzner, M. Raveni, “Observation of order and chaos in a nuclear spin-flip laser”, J. Opt. Soc. Am. B, 2:1 (1985), 156–167 | DOI

[4] D. Dangoisse, P. Glorieux, D. Hennequin, “Chaos in a CO$_2$ laser with modulated parameters: Experiments and numerical simulations”, Phys. Rev. A., 36 (1987), 4775 | DOI

[5] Y. K. Chembo, M. Jacquot, J. M. Dudley, L. Larger, “Ikeda-like chaos on a dynamically filtered supercontinuum light source”, Phys. Rev. A, 94 (2016), 023847 | DOI

[6] J. M. T. Thompson, H. B. Stewart, Nonlinear Dynamics and Chaos. Geometrical Methods for Engineers and Scientists, John Wiley Sons, Chichester, 1986 | MR | Zbl

[7] J. Foss, A. Longtin, B. Mensour, J. Milton, “Multistability and delayed recurrent loops”, Phys. Rev. Lett., 76 (1996), 708 | DOI

[8] I. V. Sysoev, V. I. Ponomarenko, D. D. Kulminskiy, M. D. Prokhorov, “Recovery of couplings and parameters of elements in networks of time-delay systems from time series”, Phys. Rev. E, 94 (2016), 052207 | DOI

[9] V. I. Ponomarenko, D. D. Kulminskiy, M. D. Prokhorov, “Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field”, Phys. Rev. E, 96 (2017), 022209 | DOI

[10] A. S. Karavaev, Yu. M. Ishbulatov, A. R. Kiselev, V. I. Ponomarenko, M. D. Prokhorov, S. A. Mironov, V. A. Shvarts, V. I. Gridnev, B. P. Bezruchko, “Model serdechno-sosudistoi sistemy cheloveka s avtonomnym konturom regulyatsii srednego arterialnogo davleniya”, Fiziologiya cheloveka, 43:1 (2017), 70–80

[11] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984 | MR | Zbl

[12] Y. Kuramoto, D. Battogtokh, “Coexisting of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385

[13] G. V. Osipov, J. Kurths, Ch. Zhou, Synchronization in Oscillatory Networks, Springer-Verlag, Berlin, 2007 | MR | Zbl

[14] V. S. Afraimovich, V. I. Nekorkin, G. V. Osipov, V. D. Shalfeev, Stability, Structures and Chaos in Nonlinear Synchronization Networks, World Sci. Publ., River Edge, NJ, 1994 | MR | Zbl

[15] A. K. Kryukov, G. V. Osipov, A. V. Polovinkin, “Multistabilnost sinkhronnykh rezhimov v ansamblyakh neidentichnykh ostsillyatolrov: tsepochka i reshetka svyazannykh elementov”, Izv. Vuzov. Prikladnaya nelineinaya dinamika, 17:2 (2009), 29–36

[16] A. K. Kryukov, O. I. Kanakov, G. V. Osipov, “Volny sinkhronizatsii v ansamblyakh slabonelineinykh ostsillyatorov”, Izv. Vuzov. Prikladnaya nelineinaya dinamika, 17:1 (2009), 13–36

[17] A. S. Pikovsky, M. G. Rosenblum, J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, Cambridge, 2001 | DOI | Zbl

[18] I. S. Kashchenko, S. A. Kashchenko, “Dynamics of the Kuramoto equation with spatially distributed control”, Commun. Nonlinear Sci. Numer. Simul., 34 (2016), 123–129 | DOI | MR | Zbl

[19] S. A. Kaschenko, “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1052 | MR | Zbl

[20] S. A. Kaschenko, “Normalization in the systems with small diffusion”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:6 (1996), 1093–1109 | MR | Zbl

[21] S. A. Kaschenko, “Prosteishie kriticheskie sluchai v dinamike nelineinykh sistem s maloi diffuziei”, Tr. MMO, 79, no. 1, MTsNMO, M., 2018, 97–115

[22] S. A. Kaschenko, “Prostranstvennye osobennosti vysokomodovykh bifurkatsii dvukhkomponentnykh sistem s maloi diffuziei”, Differents. uravneniya, 25:2 (1989), 262–270 | MR | Zbl

[23] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR

[24] I. S. Kashchenko, S. A. Kashchenko, “Infinite process of forward and backward bifurcations in the logistic equation with two delays”, Nonlinear Phenomena in Complex Systems, 22:4 (2019), 407–412 | DOI | Zbl