Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_5_a4, author = {I. D. Kan and V. A. Odnorob}, title = {Inversions of {H{\"o}lder's} {Inequality}}, journal = {Matemati\v{c}eskie zametki}, pages = {704--714}, publisher = {mathdoc}, volume = {110}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a4/} }
I. D. Kan; V. A. Odnorob. Inversions of H{\"o}lder's Inequality. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 704-714. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a4/
[1] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196 | DOI | MR | Zbl
[2] D. A. Frolenkov, I. D. Kan, A Reinforsment of the Bourgain–Kontorovich's Theorem by Elementary Methods, 2012, arXiv: 1207.4546
[3] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain–Kontorovich's Theorem, 2012, arXiv: 1207.5168
[4] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl
[5] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR | Zbl
[6] S. Huang, “An improvment on Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR | Zbl
[7] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. matem., 79:2 (2015), 77–100 | DOI | MR | Zbl
[8] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. IV”, Izv. RAN. Ser. matem., 80:6 (2016), 103–126 | DOI | MR | Zbl
[9] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. V”, Analiticheskaya i kombinatornaya teoriya chisel, Tr. MIAN, 296, MAIK «Nauka/Interperiodika», M., 2017, 133–139 | DOI | MR
[10] I. D. Kan, “Verna li gipoteza Zaremby?”, Matem. sb., 210:3 (2019), 75–130 | DOI | MR | Zbl
[11] I. D. Kan, “Usilenie metoda Burgeina–Kontorovicha: tri novykh teoremy”, Matem. sb., 212:7 (2021), 39–83 | DOI | Zbl
[12] I. D. Kan, “Usilenie odnoi teoremy Burgeina–Kontorovicha”, Dalnevost. matem. zhurn., 20:2 (2020), 164–190 | DOI | Zbl
[13] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha o malykh znacheniyakh khausdorfovoi razmernosti”, Funktsion. analiz i ego prilozh. (to appear)
[14] S. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova: Aktualnye problemy, Ch. III (Tula, 2001), Mekhaniko-matematicheskii fakultet, Mosk. un-t, M., 2002, 86–114 | Zbl
[15] I. D. Kan, “Obraschenie neravenstva Koshi–Bunyakovskogo–Shvartsa”, Matem. zametki, 99:3 (2016), 361–365 | DOI | MR | Zbl
[16] P. S. Bullen, Handbook of Means and Their Inequalities, D. Reidel Publ., Dordrecht, 1988 | MR