Inversions of H{\"o}lder's Inequality
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 704-714.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, new theorems on the inversion of the Hölder inequality that refine similar inversions known previously are proved.
Keywords: Hölder inequality, Cauchy–Bunyakovskii–Schwarz inequality.
@article{MZM_2021_110_5_a4,
     author = {I. D. Kan and V. A. Odnorob},
     title = {Inversions of {H{\"o}lder's} {Inequality}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {704--714},
     publisher = {mathdoc},
     volume = {110},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a4/}
}
TY  - JOUR
AU  - I. D. Kan
AU  - V. A. Odnorob
TI  - Inversions of H{\"o}lder's Inequality
JO  - Matematičeskie zametki
PY  - 2021
SP  - 704
EP  - 714
VL  - 110
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a4/
LA  - ru
ID  - MZM_2021_110_5_a4
ER  - 
%0 Journal Article
%A I. D. Kan
%A V. A. Odnorob
%T Inversions of H{\"o}lder's Inequality
%J Matematičeskie zametki
%D 2021
%P 704-714
%V 110
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a4/
%G ru
%F MZM_2021_110_5_a4
I. D. Kan; V. A. Odnorob. Inversions of H{\"o}lder's Inequality. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 704-714. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a4/

[1] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196 | DOI | MR | Zbl

[2] D. A. Frolenkov, I. D. Kan, A Reinforsment of the Bourgain–Kontorovich's Theorem by Elementary Methods, 2012, arXiv: 1207.4546

[3] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain–Kontorovich's Theorem, 2012, arXiv: 1207.5168

[4] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl

[5] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR | Zbl

[6] S. Huang, “An improvment on Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR | Zbl

[7] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. matem., 79:2 (2015), 77–100 | DOI | MR | Zbl

[8] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. IV”, Izv. RAN. Ser. matem., 80:6 (2016), 103–126 | DOI | MR | Zbl

[9] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. V”, Analiticheskaya i kombinatornaya teoriya chisel, Tr. MIAN, 296, MAIK «Nauka/Interperiodika», M., 2017, 133–139 | DOI | MR

[10] I. D. Kan, “Verna li gipoteza Zaremby?”, Matem. sb., 210:3 (2019), 75–130 | DOI | MR | Zbl

[11] I. D. Kan, “Usilenie metoda Burgeina–Kontorovicha: tri novykh teoremy”, Matem. sb., 212:7 (2021), 39–83 | DOI | Zbl

[12] I. D. Kan, “Usilenie odnoi teoremy Burgeina–Kontorovicha”, Dalnevost. matem. zhurn., 20:2 (2020), 164–190 | DOI | Zbl

[13] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha o malykh znacheniyakh khausdorfovoi razmernosti”, Funktsion. analiz i ego prilozh. (to appear)

[14] S. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova: Aktualnye problemy, Ch. III (Tula, 2001), Mekhaniko-matematicheskii fakultet, Mosk. un-t, M., 2002, 86–114 | Zbl

[15] I. D. Kan, “Obraschenie neravenstva Koshi–Bunyakovskogo–Shvartsa”, Matem. zametki, 99:3 (2016), 361–365 | DOI | MR | Zbl

[16] P. S. Bullen, Handbook of Means and Their Inequalities, D. Reidel Publ., Dordrecht, 1988 | MR