A Bilogarithmic Criterion for the Existence of a Regular Minorant that Does Not Satisfy the Bang Condition
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 672-687.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of constructing regular majorants for sequences $\mu=\{\mu_n\}_{n=0}^{\infty}$ of numbers $\mu_n\ge0$ that are the Taylor coefficients of integer transcendental functions of minimal exponential type are investigated. A new criterion for the existence of regular minorants of associated sequences of the extended half-line $(0,+\infty]$ in terms of the Levinson bilogarithmic condition $M=\{\mu_n^{-1}\}_{n=0}^{\infty}$ is obtained. The result provides a necessary and sufficient condition for the nontriviality of the important subclass defined by J. A. Siddiqi. The proofs of the main statements are based on properties of the Legendre transform.
Keywords: entire function, Levinson bilogarithmic condition, regular sequences
Mots-clés : Legendre transform.
@article{MZM_2021_110_5_a2,
     author = {R. A. Gaisin},
     title = {A {Bilogarithmic} {Criterion} for the {Existence} of a {Regular} {Minorant} that {Does} {Not} {Satisfy} the {Bang} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {672--687},
     publisher = {mathdoc},
     volume = {110},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a2/}
}
TY  - JOUR
AU  - R. A. Gaisin
TI  - A Bilogarithmic Criterion for the Existence of a Regular Minorant that Does Not Satisfy the Bang Condition
JO  - Matematičeskie zametki
PY  - 2021
SP  - 672
EP  - 687
VL  - 110
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a2/
LA  - ru
ID  - MZM_2021_110_5_a2
ER  - 
%0 Journal Article
%A R. A. Gaisin
%T A Bilogarithmic Criterion for the Existence of a Regular Minorant that Does Not Satisfy the Bang Condition
%J Matematičeskie zametki
%D 2021
%P 672-687
%V 110
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a2/
%G ru
%F MZM_2021_110_5_a2
R. A. Gaisin. A Bilogarithmic Criterion for the Existence of a Regular Minorant that Does Not Satisfy the Bang Condition. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 672-687. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a2/

[1] S. Mandelbroit, Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955 | MR

[2] E. M. Dynkin, “Psevdoanaliticheskoe prodolzhenie gladkikh funktsii. Ravnomernaya shkala”, Matematicheskoe programmirovanie i smezhnye voprosy. Teoriya funktsii i funktsionalnyi analiz, Trudy VII Zimnei shkoly (Drogobych, 1974), Tsentralnyi ekonomiko-matematicheskii institut AN SSSR, M., 1976, 40–73

[3] A. M. Gaisin, I. G. Kinzyabulatov, “Teorema tipa Levinsona–Sheberga. Primeneniya”, Matem. sb., 199:7 (2008), 41–62 | DOI | MR

[4] K. V. Trunov, R. S. Yulmukhametov, “Kvazianaliticheskie klassy Karlemana na ogranichennykh oblastyakh”, Algebra i analiz, 20:2 (2008), 178–217 | MR | Zbl

[5] R. A. Gaisin, “Kriterii kvazianalitichnosti tipa Salinasa–Korenblyuma dlya oblastei obschego vida”, Ufimsk. matem. zhurn., 5:3 (2013), 28–40

[6] R. A. Gaisin, “Regulyarizatsiya posledovatelnostei v smysle E. M. Dynkina”, Ufimsk. matem. zhurn., 7:2 (2015), 66–72

[7] A. F. Leontev, Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR

[8] A. Beurling, “Analytic continuation across a liniear boundary”, Acta Math., 128:3-4 (1972), 153–182 | DOI | MR | Zbl

[9] P. Koosis, The Logarithmic Integral. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[10] R. A. Gaisin, “Ob uslovii kvazianalitichnosti klassa Karlemana dlya slabo ravnomernykh oblastei”, Tezisy dokladov VI Mezhdunarodnoi shkoly-konferentsii dlya studentov, aspirantov i molodykh uchenykh “Fundamentalnaya matematika i ee prilozheniya v estestvoznanii”, RITs BashGU, Ufa, 2013, 260

[11] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya. II, Fizmatlit, M., 2006

[12] D. E. Menshov, Izbrannye trudy. Matematika, Faktorial, M., 1997

[13] R. A. Gaisin, “Otsenka promezhutochnykh proizvodnykh i teoremy tipa Banga. I”, Algebra i analiz, 27:1 (2015), 23–48 | MR

[14] J. A. Siddiqi, “Non-spanning sequences of exponentials on rectifiable plane arcs”, Linear and Complex Analysis. Problem Book, Lecture Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 555–556 | DOI | MR

[15] P. Malliavin, J. A. Siddiqi, “Classes de fonctions monogenes et approximation par des sommes d'exponentielles sur un arc rectifiable de $\mathbb{C}$”, C. R. Acad. Sci. Paris Sér. A, 282 (1976), 1091–1094 | MR | Zbl