Uniform Convexity in Nonsymmetric Spaces
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 773-785
Voir la notice de l'article provenant de la source Math-Net.Ru
Uniformly convex asymmetric spaces are defined. It is proved that every nonempty closed convex set in a uniformly convex complete asymmetric space is a set of approximative uniqueness (and, in particular, a Chebyshev set).
Keywords:
asymmetric spaces, approximative uniqueness, uniform convexity.
@article{MZM_2021_110_5_a11,
author = {I. G. Tsar'kov},
title = {Uniform {Convexity} in {Nonsymmetric} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {773--785},
publisher = {mathdoc},
volume = {110},
number = {5},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a11/}
}
I. G. Tsar'kov. Uniform Convexity in Nonsymmetric Spaces. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 773-785. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a11/