Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_5_a11, author = {I. G. Tsar'kov}, title = {Uniform {Convexity} in {Nonsymmetric} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {773--785}, publisher = {mathdoc}, volume = {110}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a11/} }
I. G. Tsar'kov. Uniform Convexity in Nonsymmetric Spaces. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 773-785. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a11/
[1] Ş. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013 | DOI | MR | Zbl
[2] S. Cobzaş, “Separation of convex sets and best approximation in spaces with asymmetric norm”, Quaest. Math., 27:3 (2004), 275–296 | MR | Zbl
[3] A. R. Alimov, “Teorema Banakha–Mazura dlya prostranstv s nesimmetrichnym rasstoyaniem”, UMN, 58:2 (350) (2003), 159–160 | DOI | MR | Zbl
[4] A. R. Alimov, “O strukture dopolneniya k chebyshevskim mnozhestvam”, Funkts. analiz i ego pril., 35:3 (2001), 19–27 | DOI | MR | Zbl
[5] A. R. Alimov, “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4 (2) (2014), 489–497 | DOI | Zbl
[6] I. G. Tsarkov, “Approksimativnye svoistva mnozhestv i nepreryvnye vyborki”, Matem. sb., 211:8 (2020), 132–157 | DOI | Zbl
[7] I. G. Tsarkov, “Slabo monotonnye mnozhestva i nepreryvnaya vyborka v nesimmetrichnykh prostranstvakh”, Matem. sb., 210:9 (2019), 129–152 | DOI | MR | Zbl
[8] I. G. Tsarkov, “Nepreryvnye vyborki iz operatorov metricheskoi proektsii i ikh obobschenii”, Izv. RAN. Ser. matem., 82:4 (2018), 199–224 | DOI | MR | Zbl
[9] I. G. Tsarkov, “Nepreryvnye vyborki v nesimmetrichnykh prostranstvakh”, Matem. sb., 209:4 (2018), 95–116 | DOI | MR | Zbl