Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_5_a10, author = {R. M. Trigub}, title = {On {Fourier} {Series} on the {Torus} and {Fourier} {Transforms}}, journal = {Matemati\v{c}eskie zametki}, pages = {766--772}, publisher = {mathdoc}, volume = {110}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a10/} }
R. M. Trigub. On Fourier Series on the Torus and Fourier Transforms. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 766-772. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a10/
[1] L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math., 249, Springer, New York, 2008 | MR | Zbl
[2] B. M. Makarov, A. N. Podkorytov, Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011
[3] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl
[4] E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview”, Anal. Math. Phys., 2:1 (2012), 1–68 | DOI | MR | Zbl
[5] W. Feller, An Inroduction to Probability Theory and its Applications, Vol. II, John Wiley Sons, New York, 1971 | MR
[6] E. Liflyand, R. Trigub, “Wiener algebras and trigonometric series in a coordinated fashion”, Constr. Approx., 2021 | DOI
[7] R. R. Goldberg, “Restrictions of Fourier transforms and extension of Fourier sequences”, J. Approximation Theory, 3 (1970), 149–155 | DOI | MR | Zbl
[8] R. M. Trigub, “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami funktsii na tore”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1378–1409 | MR | Zbl
[9] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR