On Fourier Series on the Torus and Fourier Transforms
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 766-772.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the representability of a continuous function on $\mathbb R^d$ in the form of the Fourier integral of a finite Borel complex-valued measure on $\mathbb R^d$ is reduced in this article to the same question for a simple function. This simple function is determined by the values of the given function on the integer lattice $\mathbb R^d$. For $d=1$, this result is already known: it is an inscribed polygonal line. The article also describes applications of the obtained theorems to multiple trigonometric Fourier series.
Keywords: Fourier series of a measure on the torus $\mathbb T^d$ and functions from $L_1(\mathbb T^d)$, variation of a measure, Wiener Banach algebras, positive definite functions, exponential entire functions, $(C,1)$-means of Fourier series, Banach–Alaoglu theorem.
Mots-clés : Vitali variation
@article{MZM_2021_110_5_a10,
     author = {R. M. Trigub},
     title = {On {Fourier} {Series} on the {Torus} and {Fourier} {Transforms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {766--772},
     publisher = {mathdoc},
     volume = {110},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a10/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - On Fourier Series on the Torus and Fourier Transforms
JO  - Matematičeskie zametki
PY  - 2021
SP  - 766
EP  - 772
VL  - 110
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a10/
LA  - ru
ID  - MZM_2021_110_5_a10
ER  - 
%0 Journal Article
%A R. M. Trigub
%T On Fourier Series on the Torus and Fourier Transforms
%J Matematičeskie zametki
%D 2021
%P 766-772
%V 110
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a10/
%G ru
%F MZM_2021_110_5_a10
R. M. Trigub. On Fourier Series on the Torus and Fourier Transforms. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 766-772. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a10/

[1] L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math., 249, Springer, New York, 2008 | MR | Zbl

[2] B. M. Makarov, A. N. Podkorytov, Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011

[3] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl

[4] E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview”, Anal. Math. Phys., 2:1 (2012), 1–68 | DOI | MR | Zbl

[5] W. Feller, An Inroduction to Probability Theory and its Applications, Vol. II, John Wiley Sons, New York, 1971 | MR

[6] E. Liflyand, R. Trigub, “Wiener algebras and trigonometric series in a coordinated fashion”, Constr. Approx., 2021 | DOI

[7] R. R. Goldberg, “Restrictions of Fourier transforms and extension of Fourier sequences”, J. Approximation Theory, 3 (1970), 149–155 | DOI | MR | Zbl

[8] R. M. Trigub, “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami funktsii na tore”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1378–1409 | MR | Zbl

[9] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR