On Fourier Series on the Torus and Fourier Transforms
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 766-772
Voir la notice de l'article provenant de la source Math-Net.Ru
The question of the representability of a continuous function on $\mathbb R^d$ in the form of the Fourier integral of a finite Borel complex-valued measure on $\mathbb R^d$ is reduced in this article to the same question for a simple function. This simple function is determined by the values of the given function on the integer lattice $\mathbb R^d$. For $d=1$, this result is already known: it is an inscribed polygonal line. The article also describes applications of the obtained theorems to multiple trigonometric Fourier series.
Keywords:
Fourier series of a measure on the torus $\mathbb T^d$ and functions from $L_1(\mathbb T^d)$, variation of a measure, Wiener Banach algebras, positive definite functions, exponential entire functions, $(C,1)$-means of Fourier series, Banach–Alaoglu theorem.
Mots-clés : Vitali variation
Mots-clés : Vitali variation
@article{MZM_2021_110_5_a10,
author = {R. M. Trigub},
title = {On {Fourier} {Series} on the {Torus} and {Fourier} {Transforms}},
journal = {Matemati\v{c}eskie zametki},
pages = {766--772},
publisher = {mathdoc},
volume = {110},
number = {5},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a10/}
}
R. M. Trigub. On Fourier Series on the Torus and Fourier Transforms. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 766-772. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a10/