Two Examples Related to Properties of Discrete Measures
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 592-597.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two examples illustrating properties of discrete measures are given. In the first part of the paper, it is proved that, for any probability measure $\mu$ with $\operatorname{supp}{\mu}=[-1,1]$ whose logarithmic potential is continuous on $[-1,1]$, there exists a (discrete) measure $\sigma=\sigma(\mu)$ with $\operatorname{supp}{\sigma}=[-1,1]$ such that the corresponding orthogonal polynomials $P_n(x;\sigma)=x^n+\dotsb$ satisfy the condition $(1/n)\chi(P_n(\,\cdot\,;\sigma))\xrightarrow{*}\mu$, $n\to\infty$, where $\chi(\,\cdot\,)$ is the measure counting the zeros of a polynomial. The proof of the existence of such a measure $\sigma$ is based on properties of weighted Leja points. In the second part, an example of a compact set and a sequence of discrete measures supported on it with a special property is given. Namely, the sequence of measures converges in the $*$-weak topology to the equilibrium measure on the compact set, but the corresponding sequence of logarithmic potentials converges in capacity to the equilibrium potential in no neighborhood of this compact set.
Mots-clés : orthogonal polynomial
Keywords: discrete measure, logarithmic potential, convergence in capacity.
@article{MZM_2021_110_4_a9,
     author = {S. P. Suetin},
     title = {Two {Examples} {Related} to {Properties} of {Discrete} {Measures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {592--597},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a9/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Two Examples Related to Properties of Discrete Measures
JO  - Matematičeskie zametki
PY  - 2021
SP  - 592
EP  - 597
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a9/
LA  - ru
ID  - MZM_2021_110_4_a9
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Two Examples Related to Properties of Discrete Measures
%J Matematičeskie zametki
%D 2021
%P 592-597
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a9/
%G ru
%F MZM_2021_110_4_a9
S. P. Suetin. Two Examples Related to Properties of Discrete Measures. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 592-597. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a9/

[1] E. A. Rakhmanov, “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov”, Matem. sb., 103 (145):2 (6) (1977), 237–252 | MR | Zbl

[2] E. A. Rakhmanov, “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov. II”, Matem. sb., 118 (160):1 (5) (1982), 104–117 | MR | Zbl

[3] P. P. Korovkin, “Asimptoticheskoe predstavlenie polinomov, minimiziruyuschikh integral”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Fizmatgiz, M., 1961, 273–276 | MR

[4] F. Leja, “Sur certaines suites liees aux ensembles plans et leur application a la representation conforme”, Ann. Polon. Math., 4 (1957), 8–13 | MR

[5] E. B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR

[6] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[7] Herbert Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | MR

[8] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6 (402) (2011), 37–122 | DOI | MR | Zbl

[9] H. Stahl, “Asymptotics of Hermite–Padé polynomials and related convergence results – a summary of results”, Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR

[10] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Approksimatsii Ermita–Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, UMN, 72:4 (436) (2017), 95–130 | DOI | MR

[11] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR