Multipoint Pad\'e Approximation of the Psi Function
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 584-591.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Newton interpretation of the psi function by rational functions with free poles is studied. A discrete formula for the Rodrigues determinants is obtained and the limit distribution of their zeros is found. The corresponding equilibrium problem of the theory of logarithmic potential is obtained.
Keywords: saddle-point method, equilibrium problem.
@article{MZM_2021_110_4_a8,
     author = {V. N. Sorokin},
     title = {Multipoint {Pad\'e} {Approximation} of the {Psi} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {584--591},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a8/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - Multipoint Pad\'e Approximation of the Psi Function
JO  - Matematičeskie zametki
PY  - 2021
SP  - 584
EP  - 591
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a8/
LA  - ru
ID  - MZM_2021_110_4_a8
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T Multipoint Pad\'e Approximation of the Psi Function
%J Matematičeskie zametki
%D 2021
%P 584-591
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a8/
%G ru
%F MZM_2021_110_4_a8
V. N. Sorokin. Multipoint Pad\'e Approximation of the Psi Function. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 584-591. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a8/

[1] A. A. Kandayan, “Mnogotochechnye approksimatsii Pade beta-funktsii”, Matem. zametki, 85:2 (2009), 189–203 | DOI | MR | Zbl

[2] A. A. Kandayan, V. N. Sorokin, “Mnogotochechnye approksimatsii Ermita–Pade beta-funktsii”, Matem. zametki, 87:2 (2010), 217–232 | DOI | MR | Zbl

[3] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | DOI | MR

[4] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Matem. sb., 125 (167):1 (9) (1984), 117–127 | MR | Zbl

[5] E. A. Rakhmanov, “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov diskretnoi peremennoi”, Matem. sb., 187:8 (1996), 109–124 | DOI | MR | Zbl

[6] A. I. Aptekarev, G. Lopes Lagomasino, A. Martines-Finkelshtein, “O sistemakh Nikishina s diskretnymi komponentami i slaboi asimptotike mnogochlenov sovmestnoi ortogonalnosti”, UMN, 72:3 (435) (2017), 3–64 | DOI | MR

[7] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR

[8] V. G. Lysov, “Approksimatsii Ermita–Pade smeshannogo tipa dlya sistemy Nikishina”, Analiz i matematicheskaya fizika, Trudy MIAN, 311, MIAN, M., 2020, 213–227 | DOI | MR

[9] M. Prevost, “A new proof of the irrationality of $\zeta(2)$ and $\zeta(3)$ using Pade approximants”, J. Comput. Appl. Math., 67:2 (1996), 219–235 | DOI | MR

[10] V. N. Sorokin, “Approksimatsii Ermita–Pade dlya sistem Nikishina i irratsionalnost $\zeta(3)$”, UMN, 49:2 (296) (1994), 167–168 | MR | Zbl

[11] V. N. Sorokin, “Approksimatsii Ermita–Pade posledovatelnykh stepenei logarifma i ikh arifmeticheskie prilozheniya”, Izv. vuzov. Matem., 1991, no. 11, 66–74 | MR | Zbl