Mixing Sets for Rigid Transformations
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 576-583
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that, for any infinite set $M\subset\mathbb N$ of density zero, there exists a rigid measure-preserving transformation of a probability space which is mixing along $M$. As examples, Gaussian actions and Poisson suspensions over infinite rank-one constructions are considered. Analogues of the obtained result for group actions and a method not using Gaussian and Poisson suspensions are also discussed.
Keywords:
measure-preserving transformation, mild mixing, rigidity, mixing along a set, rank-one action
Mots-clés : Gaussian action, Poisson suspension.
Mots-clés : Gaussian action, Poisson suspension.
@article{MZM_2021_110_4_a7,
author = {V. V. Ryzhikov},
title = {Mixing {Sets} for {Rigid} {Transformations}},
journal = {Matemati\v{c}eskie zametki},
pages = {576--583},
publisher = {mathdoc},
volume = {110},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a7/}
}
V. V. Ryzhikov. Mixing Sets for Rigid Transformations. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 576-583. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a7/