Mixing Sets for Rigid Transformations
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 576-583

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, for any infinite set $M\subset\mathbb N$ of density zero, there exists a rigid measure-preserving transformation of a probability space which is mixing along $M$. As examples, Gaussian actions and Poisson suspensions over infinite rank-one constructions are considered. Analogues of the obtained result for group actions and a method not using Gaussian and Poisson suspensions are also discussed.
Keywords: measure-preserving transformation, mild mixing, rigidity, mixing along a set, rank-one action
Mots-clés : Gaussian action, Poisson suspension.
@article{MZM_2021_110_4_a7,
     author = {V. V. Ryzhikov},
     title = {Mixing {Sets} for {Rigid} {Transformations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {576--583},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a7/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Mixing Sets for Rigid Transformations
JO  - Matematičeskie zametki
PY  - 2021
SP  - 576
EP  - 583
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a7/
LA  - ru
ID  - MZM_2021_110_4_a7
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Mixing Sets for Rigid Transformations
%J Matematičeskie zametki
%D 2021
%P 576-583
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a7/
%G ru
%F MZM_2021_110_4_a7
V. V. Ryzhikov. Mixing Sets for Rigid Transformations. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 576-583. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a7/