Mixing Sets for Rigid Transformations
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 576-583.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, for any infinite set $M\subset\mathbb N$ of density zero, there exists a rigid measure-preserving transformation of a probability space which is mixing along $M$. As examples, Gaussian actions and Poisson suspensions over infinite rank-one constructions are considered. Analogues of the obtained result for group actions and a method not using Gaussian and Poisson suspensions are also discussed.
Keywords: measure-preserving transformation, mild mixing, rigidity, mixing along a set, rank-one action
Mots-clés : Gaussian action, Poisson suspension.
@article{MZM_2021_110_4_a7,
     author = {V. V. Ryzhikov},
     title = {Mixing {Sets} for {Rigid} {Transformations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {576--583},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a7/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Mixing Sets for Rigid Transformations
JO  - Matematičeskie zametki
PY  - 2021
SP  - 576
EP  - 583
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a7/
LA  - ru
ID  - MZM_2021_110_4_a7
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Mixing Sets for Rigid Transformations
%J Matematičeskie zametki
%D 2021
%P 576-583
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a7/
%G ru
%F MZM_2021_110_4_a7
V. V. Ryzhikov. Mixing Sets for Rigid Transformations. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 576-583. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a7/

[1] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[2] T. Adams, Mixing Sets for Non-Mixing Transformations, 2016, arXiv: 1604.01090

[3] V. V. Ryzhikov, “O sokhranyayuschikh meru preobrazovaniyakh ranga odin”, Tr. MMO, 81, no. 2, MTsNMO, M., 2020, 281–318

[4] V. V. Ryzhikov, “Slaboe zamykanie beskonechnykh deistvii ranga 1, prisoedineniya i spektr”, Matem. zametki, 106:6 (2019), 894–903 | DOI | MR

[5] Yu. A. Neretin, Kategorii simmetrii i beskonechnomernye gruppy, URSS, M., 1998 | MR

[6] E. Janvresse, E. Roy, T. de la Rue, Dynamical Systems of Probabilistic Origin: Gaussian and Poisson Systems, Preprint HAL Id: , 2020 hal-02451104 | DOI

[7] D. V. Anosov, “O spektralnykh kratnostyakh v ergodicheskoi teorii”, Sovr. probl. matem., 3, MIAN, M., 2003, 3–85 | DOI | MR | Zbl

[8] V. V. Ryzhikov, Weak Closure Theorem for Double Staircase Actions, , 2011 1108.0568

[9] V. I. Oseledets, “Avtomorfizm s prostym i nepreryvnym spektrom bez gruppovogo svoistva”, Matem. zametki, 5:3 (1969), 323–326 | MR | Zbl

[10] A. M. Stepin, “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 801–834 | MR | Zbl

[11] A. M. Stepin, “O svoistvakh spektrov ergodicheskikh dinamicheskikh sistem s lokalno kompaktnym vremenem”, Dokl. AN SSSR, 169:4 (1966), 773–776 | MR | Zbl

[12] I. V. Klimov, V. V. Ryzhikov, “Minimalnye samoprisoedineniya beskonechnykh peremeshivayuschikh deistvii ranga 1”, Matem. zametki, 102:6 (2017), 851–856 | DOI