Approximation of Functions by Discrete Fourier Sums in Polynomials Orthogonal on a Nonuniform Grid with Jacobi Weight
Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 434-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let there be given a partition of the closed interval $[-1,1]$ by arbitrary nodes $\{\eta_j\}_{j=0}^N$, where $\lambda_N=\max_{0\le j \le N-1} (\eta_{j+1}-\eta_{j})$. For a continuous function $f(t)$ given on an arbitrary grid $\Omega_N=\{t_j \mid \eta_{j} \le t_j \le \eta_{j+1}\}_{j=0}^{N-1}$, the approximation properties of the discrete Fourier sums $\Lambda^{\alpha,\beta}_{n,N}(f,t)$ in polynomials $\widehat P^{\alpha,\beta}_{n, N} (t)$ are investigated in the case of nonnegative integer parameters $\alpha$, $\beta$; these polynomials are orthogonal to $\Omega_N$ with Jacobi weight $\kappa^{\alpha,\beta}(t)=(1-t)^{\alpha}(1+t)^{\beta}$. Given the restriction $n=O(\lambda_N^{-1/3})$ on the order of the Fourier sums, a pointwise estimate of the Lebesgue function $L^{\alpha,\beta}_{n, N}(t)$ is obtained; it depends on $n$ and the position of the point $t \in [-1,1]$: $$ L^{\alpha,\beta}_{n,N}(t)=O\bigl[\ln{(n+1)}+ |\widehat P^{\alpha,\beta}_{n,N}(t)|+ |\widehat P^{\alpha,\beta}_{n+1,N}(t)|\bigr]. $$
Keywords: Jacobi polynomials, nonuniform grid, approximation properties.
Mots-clés : Fourier sum, Lebesgue function, orthogonal polynomials
@article{MZM_2021_110_3_a8,
     author = {M. S. Sultanakhmedov},
     title = {Approximation of {Functions} by {Discrete} {Fourier} {Sums} in {Polynomials} {Orthogonal} on a {Nonuniform} {Grid} with {Jacobi} {Weight}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {434--449},
     publisher = {mathdoc},
     volume = {110},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a8/}
}
TY  - JOUR
AU  - M. S. Sultanakhmedov
TI  - Approximation of Functions by Discrete Fourier Sums in Polynomials Orthogonal on a Nonuniform Grid with Jacobi Weight
JO  - Matematičeskie zametki
PY  - 2021
SP  - 434
EP  - 449
VL  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a8/
LA  - ru
ID  - MZM_2021_110_3_a8
ER  - 
%0 Journal Article
%A M. S. Sultanakhmedov
%T Approximation of Functions by Discrete Fourier Sums in Polynomials Orthogonal on a Nonuniform Grid with Jacobi Weight
%J Matematičeskie zametki
%D 2021
%P 434-449
%V 110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a8/
%G ru
%F MZM_2021_110_3_a8
M. S. Sultanakhmedov. Approximation of Functions by Discrete Fourier Sums in Polynomials Orthogonal on a Nonuniform Grid with Jacobi Weight. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 434-449. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a8/

[1] I. I. Sharapudinov, Diskretnye ortogonalnye mnogochleny. Teoriya i prilozheniya, Izd-vo DNTs RAN, Makhachkala, 2006

[2] I. I. Sharapudinov, “O skhodimosti metoda naimenshikh kvadratov”, Matem. zametki, 53:3 (1993), 131–143 | MR | Zbl

[3] I. I. Sharapudinov, “Asimptoticheskie svoistva polinomov, ortogonalnykh na konechnykh setkakh edinichnoi okruzhnosti”, Vestn. Dagestan. nauch. tsentra RAN, 42 (2011), 5–14

[4] I. I. Sharapudinov, “Polinomy, ortogonalnye na setkakh iz edinichnoi okruzhnosti i chislovoi osi”, Dagestan. elektron. matem. izv., 1 (2014), 1–55

[5] F. M. Korkmasov, “Otsenka funktsii Lebega diskretnykh summ Fure–Yakobi”, Vestn. SamGU. Estestvennonauchnaya ser., 6-1 (46) (2006), 33–46

[6] F. M. Korkmasov, “Approksimativnye svoistva diskretnykh chastnykh summ Fure–Yakobi pryamougolnogo vida”, Vestn. VGU. Ser. fizika., matem., 2007, no. 1, 63–72

[7] F. M. Korkmasov, “O konstantakh Lebega diskretnykh summ Fure–Yakobi pryamougolnogo vida”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki, 2007, no. 2 (138), 9–14

[8] Z. M. Magomedova, “Ob asimptotike mnogochlenov, ortogonalnykh na proizvolnykh setkakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:3 (1) (2011), 32–41 | DOI

[9] A. A. Nurmagomedov, “Mnogochleny, ortogonalnye na neravnomernykh setkakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:3 (2) (2011), 29–42 | DOI

[10] A. A. Nurmagomedov, “Priblizhenie funktsii chastnymi summami ryada Fure po mnogochlenam, ortogonalnym na proizvolnykh setkakh”, Izv. vuzov. Matem., 2020, no. 4, 64–73 | DOI

[11] A. A. Nurmagomedov, “Skhodimost summ Fure po mnogochlenam, ortogonalnym na proizvolnykh setkakh”, Izv. vuzov. Matem., 2012, no. 7, 60–62 | MR

[12] A. A. Nurmagomedov, N. K. Rasulov, “Dvustoronnyaya otsenka funktsii Lebega summ Fure po mnogochlenam, ortogonalnym na neravnomernykh setkakh”, Vestn. SPbGU. Ser. 1. Matem. Mekh. Astron., 5 (63):3 (2018), 417–430 | MR

[13] M. S. Sultanakhmedov, “On the convergence of the least square method in case of non-uniform grids”, Probl. Anal. Issues Anal., 8 (26):3 (2019), 166–186 | DOI | MR

[14] M. S. Sultanakhmedov, “Asimptoticheskie svoistva i vesovye otsenki polinomov, ortogonalnykh na neravnomernoi setke s vesom Yakobi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:1 (2014), 38–47 | DOI

[15] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., New Yor, 1939 | MR

[16] N. K. Bari, “Obobschenie neravenstv S. N. Bernshteina i A. A. Markova.”, Izv. AN SSSR. Ser. matem., 18:2 (1954), 159–176 | MR | Zbl

[17] S. V. Konyagin, “O neravenstve V. A. Markova dlya mnogochlenov v metrike $L$”, Priblizhenie funktsii polinomami i splainami, Tr. MIAN SSSR, 145, 1980, 117–125 | MR | Zbl

[18] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Fizmatlit, M., 2007 | MR

[19] W. Van Assche, “Orthogonal polynomials in the complex plane and on the real line”, Special Functions, $q$-Series and Related Topics, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997, 211–245 | MR