Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type
Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 424-433

Voir la notice de l'article provenant de la source Math-Net.Ru

Given any system of Laurent-type power series, a criterion for the uniqueness of polyorthogonal polynomials of first type associated with this system is stated and proved, and explicit determinant representations generalizing E. Schmidt's formula for these polynomials are obtained. The proved statements supplement well-known results of the theory of orthogonal and polyorthogonal polynomials.
Mots-clés : orthogonal polynomial, Hankel determinant, polyorthogonal polynomial.
Keywords: normal index, perfect system
@article{MZM_2021_110_3_a7,
     author = {A. P. Starovoitov and N. V. Ryabchenko},
     title = {Analogs of {Schmidt's} {Formula} for {Polyorthogonal} {Polynomials} of the {First} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {424--433},
     publisher = {mathdoc},
     volume = {110},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. V. Ryabchenko
TI  - Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type
JO  - Matematičeskie zametki
PY  - 2021
SP  - 424
EP  - 433
VL  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/
LA  - ru
ID  - MZM_2021_110_3_a7
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. V. Ryabchenko
%T Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type
%J Matematičeskie zametki
%D 2021
%P 424-433
%V 110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/
%G ru
%F MZM_2021_110_3_a7
A. P. Starovoitov; N. V. Ryabchenko. Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 424-433. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/