Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type
Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 424-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given any system of Laurent-type power series, a criterion for the uniqueness of polyorthogonal polynomials of first type associated with this system is stated and proved, and explicit determinant representations generalizing E. Schmidt's formula for these polynomials are obtained. The proved statements supplement well-known results of the theory of orthogonal and polyorthogonal polynomials.
Mots-clés : orthogonal polynomial, Hankel determinant, polyorthogonal polynomial.
Keywords: normal index, perfect system
@article{MZM_2021_110_3_a7,
     author = {A. P. Starovoitov and N. V. Ryabchenko},
     title = {Analogs of {Schmidt's} {Formula} for {Polyorthogonal} {Polynomials} of the {First} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {424--433},
     publisher = {mathdoc},
     volume = {110},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. V. Ryabchenko
TI  - Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type
JO  - Matematičeskie zametki
PY  - 2021
SP  - 424
EP  - 433
VL  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/
LA  - ru
ID  - MZM_2021_110_3_a7
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. V. Ryabchenko
%T Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type
%J Matematičeskie zametki
%D 2021
%P 424-433
%V 110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/
%G ru
%F MZM_2021_110_3_a7
A. P. Starovoitov; N. V. Ryabchenko. Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 424-433. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/

[1] A. I. Aptekarev, “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99:1-2 (1998), 423–447 | DOI | MR

[2] A. Aptekarev, V. Kaliaguine, J. Van Iseghem, “The genetic sums' representation for the moments of a system of Stieltjes functions and its application”, Constr. Approx., 16:4 (2000), 487–524 | DOI | MR

[3] W. Van Assche, E. Coussement, “Some classical multiple orthogonal polynomials”, J. Comput. Appl. Math., 127:1-2 (2001), 317–347 | DOI | MR

[4] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355:10 (2003), 3887–3914 | DOI | MR

[5] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR

[6] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[7] V. G. Lysov, “Approksimatsii Ermita–Pade smeshannogo tipa dlya sistemy Nikishina”, Analiz i matematicheskaya fizika, Tr. MIAN, 311, MIAN, M., 2020, 213–227 | DOI | MR

[8] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR

[9] G. Lopez Lagomasino, S. Medina Peralta, J. Szmigielski, “Mixed type Hermite–Pade approximation inspired by the Degasperis–Procesi equation”, Adv. Math., 349 (2019), 813–838 | DOI | MR

[10] S. P. Suetin, “Polinomy Ermita–Pade i kvadratichnye approksimatsii Shafera dlya mnogoznachnykh analiticheskikh funktsii”, UMN, 75:4 (454) (2020), 213–214 | DOI | MR

[11] N. R. Ikonomov, S. P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita–Pade ryada”, Matem. sb., 212:9 (2021) (to appear) | DOI

[12] E. Schmidt, “Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener”, Math. Ann., 63 (1907), 433–476 | DOI

[13] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl

[14] A. P. Starovoitov, N. V. Ryabchenko, “O yavnom vide poliortogonalnykh mnogochlenov”, Izv. vuzov. Matem., 2021, no. 4, 80–89 | DOI

[15] E. Frank, “Orthogonality properties of C-fractions”, Bull. Amer. Math. Soc., 55:4 (1949), 384–390 | DOI | MR

[16] H. van Rossum, “Systems of orthogonal and quasi-orthogonal polynomials connected with the Padé table. I”, Nederl. Akad. Wetensch. Proc. Ser. A, 58 (1955), 517–525 | DOI | MR

[17] V. N. Sorokin, “O sovmestnom priblizhenii neskolkikh lineinykh form”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 1, 44–47 | MR