Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_3_a7, author = {A. P. Starovoitov and N. V. Ryabchenko}, title = {Analogs of {Schmidt's} {Formula} for {Polyorthogonal} {Polynomials} of the {First} {Type}}, journal = {Matemati\v{c}eskie zametki}, pages = {424--433}, publisher = {mathdoc}, volume = {110}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/} }
TY - JOUR AU - A. P. Starovoitov AU - N. V. Ryabchenko TI - Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type JO - Matematičeskie zametki PY - 2021 SP - 424 EP - 433 VL - 110 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/ LA - ru ID - MZM_2021_110_3_a7 ER -
A. P. Starovoitov; N. V. Ryabchenko. Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 424-433. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a7/
[1] A. I. Aptekarev, “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99:1-2 (1998), 423–447 | DOI | MR
[2] A. Aptekarev, V. Kaliaguine, J. Van Iseghem, “The genetic sums' representation for the moments of a system of Stieltjes functions and its application”, Constr. Approx., 16:4 (2000), 487–524 | DOI | MR
[3] W. Van Assche, E. Coussement, “Some classical multiple orthogonal polynomials”, J. Comput. Appl. Math., 127:1-2 (2001), 317–347 | DOI | MR
[4] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355:10 (2003), 3887–3914 | DOI | MR
[5] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR
[6] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl
[7] V. G. Lysov, “Approksimatsii Ermita–Pade smeshannogo tipa dlya sistemy Nikishina”, Analiz i matematicheskaya fizika, Tr. MIAN, 311, MIAN, M., 2020, 213–227 | DOI | MR
[8] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR
[9] G. Lopez Lagomasino, S. Medina Peralta, J. Szmigielski, “Mixed type Hermite–Pade approximation inspired by the Degasperis–Procesi equation”, Adv. Math., 349 (2019), 813–838 | DOI | MR
[10] S. P. Suetin, “Polinomy Ermita–Pade i kvadratichnye approksimatsii Shafera dlya mnogoznachnykh analiticheskikh funktsii”, UMN, 75:4 (454) (2020), 213–214 | DOI | MR
[11] N. R. Ikonomov, S. P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita–Pade ryada”, Matem. sb., 212:9 (2021) (to appear) | DOI
[12] E. Schmidt, “Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener”, Math. Ann., 63 (1907), 433–476 | DOI
[13] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl
[14] A. P. Starovoitov, N. V. Ryabchenko, “O yavnom vide poliortogonalnykh mnogochlenov”, Izv. vuzov. Matem., 2021, no. 4, 80–89 | DOI
[15] E. Frank, “Orthogonality properties of C-fractions”, Bull. Amer. Math. Soc., 55:4 (1949), 384–390 | DOI | MR
[16] H. van Rossum, “Systems of orthogonal and quasi-orthogonal polynomials connected with the Padé table. I”, Nederl. Akad. Wetensch. Proc. Ser. A, 58 (1955), 517–525 | DOI | MR
[17] V. N. Sorokin, “O sovmestnom priblizhenii neskolkikh lineinykh form”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 1, 44–47 | MR