Invariant Schr\"odinger Operators with Point Interactions at the Vertices of a Regular Polyhedron
Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 471-477.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Schrödinger Operator with point interactions, regular polyhedron, Weyl function, symmetry group.
@article{MZM_2021_110_3_a12,
     author = {M. M. Malamud and V. V. Marchenko},
     title = {Invariant {Schr\"odinger} {Operators} with {Point} {Interactions} at the {Vertices} of a {Regular} {Polyhedron}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {471--477},
     publisher = {mathdoc},
     volume = {110},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a12/}
}
TY  - JOUR
AU  - M. M. Malamud
AU  - V. V. Marchenko
TI  - Invariant Schr\"odinger Operators with Point Interactions at the Vertices of a Regular Polyhedron
JO  - Matematičeskie zametki
PY  - 2021
SP  - 471
EP  - 477
VL  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a12/
LA  - ru
ID  - MZM_2021_110_3_a12
ER  - 
%0 Journal Article
%A M. M. Malamud
%A V. V. Marchenko
%T Invariant Schr\"odinger Operators with Point Interactions at the Vertices of a Regular Polyhedron
%J Matematičeskie zametki
%D 2021
%P 471-477
%V 110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a12/
%G ru
%F MZM_2021_110_3_a12
M. M. Malamud; V. V. Marchenko. Invariant Schr\"odinger Operators with Point Interactions at the Vertices of a Regular Polyhedron. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 471-477. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a12/

[1] M. G. Krein, Matem. sb., 20 (62):3 (1947), 431–495 | MR | Zbl

[2] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR

[3] V. A. Derkach, M. M. Malamud, Teoriya rasshirenii simmetricheskikh operatorov i granichnye zadachi, In-t matem. NAN Ukrainy, Kiev, 2017

[4] K. A. Makarov, E. Tsekanovskii, Methods Funct. Anal. Topology, 13:2 (2007), 181–186 | MR

[5] M. Bekker, Methods Funct. Anal. Topology, 13:3 (2007), 223–235 | MR

[6] K. A. Makarov, E. R. Tsekanovskii, TMF, 186:1 (2016), 51–75 | DOI | MR

[7] M. Bekker, Adv. Dyn. Syst. Appl., 2:2 (2007), 141–165 | MR

[8] K. A. Makarov, E. Tsekanovskii, Representations of Commutation Relations in Dissipative Quantum Mechanics, 2021, arXiv: 2101.10923

[9] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[10] V. S. Budyka, M. M. Malamud, Matem. zametki, 106:6 (2019), 940–945 | DOI | MR

[11] V. S. Rabinovich, Matem. zametki, 102:5 (2017), 761–774 | DOI | MR

[12] N. Goloschapova, M. Malamud, V. Zastavnyi, Math. Nachr., 285:14-15 (2012), 1839–1859 | MR

[13] M. M. Malamud, K. Schmüdgen, J. Funct. Anal., 263:10 (2012), 3144–3194 | DOI | MR

[14] M. Kaminaga, T. Mine, F. Nakano, Ann. Henri Poincaré, 21:2 (2020), 405–435 | DOI | MR

[15] A. Michelangeli, R. Scandone, Math. Eng., 3:2 (2021), Paper No. 017 | DOI | MR

[16] V. A. Derkach, M. M. Malamud, J. Funct. Anal., 95 (1991), 1–95 | DOI | MR

[17] V. I. Gorbachuk, M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Math. Appl. (Soviet Ser.), 48, Kluwer Acad. Publ., Dordrecht, 1991 | MR

[18] Z. Sasvári, Multivariate Characteristic and Correlation Functions, De Gruyter Stud. Math., 50, Walter de Gruyter, Berlin, 2013 | MR

[19] W. Arveson, An Invitation to $C^*$-Algebras, Springer, New York, 1976 | MR