Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_3_a12, author = {M. M. Malamud and V. V. Marchenko}, title = {Invariant {Schr\"odinger} {Operators} with {Point} {Interactions} at the {Vertices} of a {Regular} {Polyhedron}}, journal = {Matemati\v{c}eskie zametki}, pages = {471--477}, publisher = {mathdoc}, volume = {110}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a12/} }
TY - JOUR AU - M. M. Malamud AU - V. V. Marchenko TI - Invariant Schr\"odinger Operators with Point Interactions at the Vertices of a Regular Polyhedron JO - Matematičeskie zametki PY - 2021 SP - 471 EP - 477 VL - 110 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a12/ LA - ru ID - MZM_2021_110_3_a12 ER -
%0 Journal Article %A M. M. Malamud %A V. V. Marchenko %T Invariant Schr\"odinger Operators with Point Interactions at the Vertices of a Regular Polyhedron %J Matematičeskie zametki %D 2021 %P 471-477 %V 110 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a12/ %G ru %F MZM_2021_110_3_a12
M. M. Malamud; V. V. Marchenko. Invariant Schr\"odinger Operators with Point Interactions at the Vertices of a Regular Polyhedron. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 471-477. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a12/
[1] M. G. Krein, Matem. sb., 20 (62):3 (1947), 431–495 | MR | Zbl
[2] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR
[3] V. A. Derkach, M. M. Malamud, Teoriya rasshirenii simmetricheskikh operatorov i granichnye zadachi, In-t matem. NAN Ukrainy, Kiev, 2017
[4] K. A. Makarov, E. Tsekanovskii, Methods Funct. Anal. Topology, 13:2 (2007), 181–186 | MR
[5] M. Bekker, Methods Funct. Anal. Topology, 13:3 (2007), 223–235 | MR
[6] K. A. Makarov, E. R. Tsekanovskii, TMF, 186:1 (2016), 51–75 | DOI | MR
[7] M. Bekker, Adv. Dyn. Syst. Appl., 2:2 (2007), 141–165 | MR
[8] K. A. Makarov, E. Tsekanovskii, Representations of Commutation Relations in Dissipative Quantum Mechanics, 2021, arXiv: 2101.10923
[9] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR
[10] V. S. Budyka, M. M. Malamud, Matem. zametki, 106:6 (2019), 940–945 | DOI | MR
[11] V. S. Rabinovich, Matem. zametki, 102:5 (2017), 761–774 | DOI | MR
[12] N. Goloschapova, M. Malamud, V. Zastavnyi, Math. Nachr., 285:14-15 (2012), 1839–1859 | MR
[13] M. M. Malamud, K. Schmüdgen, J. Funct. Anal., 263:10 (2012), 3144–3194 | DOI | MR
[14] M. Kaminaga, T. Mine, F. Nakano, Ann. Henri Poincaré, 21:2 (2020), 405–435 | DOI | MR
[15] A. Michelangeli, R. Scandone, Math. Eng., 3:2 (2021), Paper No. 017 | DOI | MR
[16] V. A. Derkach, M. M. Malamud, J. Funct. Anal., 95 (1991), 1–95 | DOI | MR
[17] V. I. Gorbachuk, M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Math. Appl. (Soviet Ser.), 48, Kluwer Acad. Publ., Dordrecht, 1991 | MR
[18] Z. Sasvári, Multivariate Characteristic and Correlation Functions, De Gruyter Stud. Math., 50, Walter de Gruyter, Berlin, 2013 | MR
[19] W. Arveson, An Invitation to $C^*$-Algebras, Springer, New York, 1976 | MR