Binary Leibniz Algebras
Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 336-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebra is called a binary Leibniz algebra if each of its two-generated subalgebras is a Leibniz algebra. In the present paper, we give a description of binary Leibniz algebras in terms of identities. As a consequence, we show that the variety of binary Leibniz algebras is not Schreier and that the freedom theorem fails to hold for this variety.
Keywords: Leibniz algebra, binary Lie algebra, polynomial identity.
@article{MZM_2021_110_3_a1,
     author = {N. A. Ismailov and A. S. Dzhumadil'daev},
     title = {Binary {Leibniz} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {336--344},
     publisher = {mathdoc},
     volume = {110},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a1/}
}
TY  - JOUR
AU  - N. A. Ismailov
AU  - A. S. Dzhumadil'daev
TI  - Binary Leibniz Algebras
JO  - Matematičeskie zametki
PY  - 2021
SP  - 336
EP  - 344
VL  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a1/
LA  - ru
ID  - MZM_2021_110_3_a1
ER  - 
%0 Journal Article
%A N. A. Ismailov
%A A. S. Dzhumadil'daev
%T Binary Leibniz Algebras
%J Matematičeskie zametki
%D 2021
%P 336-344
%V 110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a1/
%G ru
%F MZM_2021_110_3_a1
N. A. Ismailov; A. S. Dzhumadil'daev. Binary Leibniz Algebras. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 336-344. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a1/

[1] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[2] A. A. Albert, “On the power-associativity of rings”, Summa Brasil. Math., 2:2 (1948), 21–32 | MR

[3] A. T. Gainov, “Tozhdestvennye sootnosheniya dlya binarno lievykh kolets”, UMN, 12:3 (75) (1957), 141–146 | MR | Zbl

[4] C. V. Pchelintsev, “Opredelyayuschie tozhdestva odnogo mnogoobraziya pravoalternativnykh algebr”, Matem. zametki, 20:2 (1976), 161–176 | MR | Zbl

[5] A. T. Gainov, “Nezavisimaya sistema tozhdestv dlya mnogoobraziya monoleibnitsevykh algebr”, Algebra i logika, 49:2 (2010), 175–180 | MR | Zbl

[6] E. N. Kuzmin, “O binarno-lievykh algebrakh malykh razmernostei”, Algebra i logika, 37:3 (1998), 320–328 | MR

[7] M. Magnus, “Über discontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz)”, J. Reine Angew. Math., 163 (1930), 141–165 | MR

[8] A. I. Shirshov, “Nekotorye algoritmicheskie problemy dlya algebr Li”, Sib. matem. zhurn., 3:2 (1962), 292–296 | MR

[9] A. I. Shirshov, “Nekotorye algoritmicheskie problemy dlya $\varepsilon$-algebr”, Sib. matem. zhurn., 3:1 (1962), 132–137 | MR | Zbl

[10] L. Makar-Limanov, “Algebraically closed skew fields”, J. Algebra, 93:1 (1985), 117–135 | DOI | MR

[11] A. A. Mikhalev, I. P. Shestakov, “PBW-pairs of varieties of linear algebras”, Comm. Algebra, 42:2 (2014), 667–687 | DOI | MR

[12] A. I. Shirshov, “Podalgebry svobodnykh lievykh algebr”, Matem. sb., 33 (75):2 (1953), 441–452 | MR | Zbl

[13] A. I. Shirshov, “Podalgebry svobodnykh kommutativnykh i svobodnykh antikommutativnykh algebr”, Matem. sb., 34 (76):1 (1954), 81–88 | MR | Zbl

[14] J. L. Loday, T. Pirashvili, “Universal enveloping algebras of Leibniz algebras and (co)-homology”, Math. Ann., 296:1 (1993), 139–158 | DOI | MR

[15] M. R. Bremner, L. A. Peresi, J. Sánchez-Ortega, “Malcev dialgebras”, Linear Multilinear Algebra, 60:10 (2012), 1125–1141 | DOI | MR

[16] P. S. Kolesnikov, “Mnogoobraziya dialgebr i konformnye algebry”, Sib. matem. zhurn., 49:2 (2008), 322–339 | MR | Zbl

[17] A. N. Grishkov, “Stroenie i redstavleniya binarno-lievykh algebr”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 999–1030 | MR | Zbl