Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_3_a0, author = {D. V. Ivanov}, title = {Upper {Bounds} for the {Expected} {Maxima} of {Independent} {Random} {Variables} {Given} {Known} {First} {Four} {Moments}}, journal = {Matemati\v{c}eskie zametki}, pages = {323--335}, publisher = {mathdoc}, volume = {110}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a0/} }
TY - JOUR AU - D. V. Ivanov TI - Upper Bounds for the Expected Maxima of Independent Random Variables Given Known First Four Moments JO - Matematičeskie zametki PY - 2021 SP - 323 EP - 335 VL - 110 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a0/ LA - ru ID - MZM_2021_110_3_a0 ER -
D. V. Ivanov. Upper Bounds for the Expected Maxima of Independent Random Variables Given Known First Four Moments. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a0/
[1] E. J. Gumbel, “The maxima of the mean largest value and of the range”, Ann. Math. Statistics, 25:1 (1954), 76–84 | DOI | MR
[2] H. O. Hartley, H. A. David, “Universal bounds for mean range and extreme observation”, Ann. Math. Statistics, 25:1 (1954), 85–99 | DOI | MR
[3] B. C. Arnold, “$p$-Norm bounds on the expectation of the maximum of possibly dependent sample”, J. Multivariate Anal, 17:3 (1985), 316–332 | DOI | MR
[4] B. C. Arnold, “Bounds on the expected maximum”, Comm. Statist. Theory Methods, 17:7 (1988), 2135–2150 | DOI | MR
[5] D. Bertsimas, K. Natarajan, Ch.-P. Teo, “Tight bounds on expected order statistics”, Probab. Engrg. Inform. Sci., 20:4 (2006), 667–686 | DOI | MR
[6] T. Rychlik, “Maximal expectations of extreme order statistics from increasing density and failure rate populations”, Comm. Statist. Theory Methods, 43:10-12 (2014), 2199–2213 | DOI | MR
[7] A. Goroncy, T. Rychlik, “Evaluations of expectations of order statistics and spacings based on IFR distributions”, Metrika, 79:6 (2016), 635–657 | DOI | MR
[8] D. V. Ivanov, “Uslovnye granitsy srednikh maksimumov sluchainykh velichin i ikh dostizhimost”, Sistemy i sredstva inform., 29:1 (2019), 140–163 | DOI
[9] D. V. Ivanov, “Verkhnie granitsy srednikh maksimumov sluchainykh velichin s izvestnymi koeffitsientami asimmetrii i ekstsessa”, Sovremennye problemy fiziko-matematicheskikh nauk. Materialy III Mezhdunarodnoi nauchno-prakticheskoi konferentsii SPFMN-2017, Tezisy dokladov, Orlovskii gos. un-t, Orel, 2017, 146–150