Upper Bounds for the Expected Maxima of Independent Random Variables Given Known First Four Moments
Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 323-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of conditional bounds for the expectation of the maximum of independent identically distributed standardized random variables for which the values of the skewness and kurtosis coefficients are known. With the aid of Hölder's inequality, an upper bound (in the form of a lower bound for a certain expression with parameters) is obtained and a criterion for the reachability of this estimate is formulated. A lower bound for the upper boundary of the expectation of the maximum is also found. A simpler and rougher upper bound is given in explicit form.
Keywords: expectation of the maximum, reachability of boundaries, Hölder's inequality
Mots-clés : Lagrange multiplier method.
@article{MZM_2021_110_3_a0,
     author = {D. V. Ivanov},
     title = {Upper {Bounds} for the {Expected} {Maxima} of {Independent} {Random} {Variables} {Given} {Known} {First} {Four} {Moments}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--335},
     publisher = {mathdoc},
     volume = {110},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a0/}
}
TY  - JOUR
AU  - D. V. Ivanov
TI  - Upper Bounds for the Expected Maxima of Independent Random Variables Given Known First Four Moments
JO  - Matematičeskie zametki
PY  - 2021
SP  - 323
EP  - 335
VL  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a0/
LA  - ru
ID  - MZM_2021_110_3_a0
ER  - 
%0 Journal Article
%A D. V. Ivanov
%T Upper Bounds for the Expected Maxima of Independent Random Variables Given Known First Four Moments
%J Matematičeskie zametki
%D 2021
%P 323-335
%V 110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a0/
%G ru
%F MZM_2021_110_3_a0
D. V. Ivanov. Upper Bounds for the Expected Maxima of Independent Random Variables Given Known First Four Moments. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a0/

[1] E. J. Gumbel, “The maxima of the mean largest value and of the range”, Ann. Math. Statistics, 25:1 (1954), 76–84 | DOI | MR

[2] H. O. Hartley, H. A. David, “Universal bounds for mean range and extreme observation”, Ann. Math. Statistics, 25:1 (1954), 85–99 | DOI | MR

[3] B. C. Arnold, “$p$-Norm bounds on the expectation of the maximum of possibly dependent sample”, J. Multivariate Anal, 17:3 (1985), 316–332 | DOI | MR

[4] B. C. Arnold, “Bounds on the expected maximum”, Comm. Statist. Theory Methods, 17:7 (1988), 2135–2150 | DOI | MR

[5] D. Bertsimas, K. Natarajan, Ch.-P. Teo, “Tight bounds on expected order statistics”, Probab. Engrg. Inform. Sci., 20:4 (2006), 667–686 | DOI | MR

[6] T. Rychlik, “Maximal expectations of extreme order statistics from increasing density and failure rate populations”, Comm. Statist. Theory Methods, 43:10-12 (2014), 2199–2213 | DOI | MR

[7] A. Goroncy, T. Rychlik, “Evaluations of expectations of order statistics and spacings based on IFR distributions”, Metrika, 79:6 (2016), 635–657 | DOI | MR

[8] D. V. Ivanov, “Uslovnye granitsy srednikh maksimumov sluchainykh velichin i ikh dostizhimost”, Sistemy i sredstva inform., 29:1 (2019), 140–163 | DOI

[9] D. V. Ivanov, “Verkhnie granitsy srednikh maksimumov sluchainykh velichin s izvestnymi koeffitsientami asimmetrii i ekstsessa”, Sovremennye problemy fiziko-matematicheskikh nauk. Materialy III Mezhdunarodnoi nauchno-prakticheskoi konferentsii SPFMN-2017, Tezisy dokladov, Orlovskii gos. un-t, Orel, 2017, 146–150