Upper Bounds for the Expected Maxima of Independent Random Variables Given Known First Four Moments
Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 323-335
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the study of conditional bounds for the expectation of the maximum of independent identically distributed standardized random variables for which the values of the skewness and kurtosis coefficients are known. With the aid of Hölder's inequality, an upper bound (in the form of a lower bound for a certain expression with parameters) is obtained and a criterion for the reachability of this estimate is formulated. A lower bound for the upper boundary of the expectation of the maximum is also found. A simpler and rougher upper bound is given in explicit form.
Keywords:
expectation of the maximum, reachability of boundaries, Hölder's inequality
Mots-clés : Lagrange multiplier method.
Mots-clés : Lagrange multiplier method.
@article{MZM_2021_110_3_a0,
author = {D. V. Ivanov},
title = {Upper {Bounds} for the {Expected} {Maxima} of {Independent} {Random} {Variables} {Given} {Known} {First} {Four} {Moments}},
journal = {Matemati\v{c}eskie zametki},
pages = {323--335},
publisher = {mathdoc},
volume = {110},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a0/}
}
TY - JOUR AU - D. V. Ivanov TI - Upper Bounds for the Expected Maxima of Independent Random Variables Given Known First Four Moments JO - Matematičeskie zametki PY - 2021 SP - 323 EP - 335 VL - 110 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a0/ LA - ru ID - MZM_2021_110_3_a0 ER -
D. V. Ivanov. Upper Bounds for the Expected Maxima of Independent Random Variables Given Known First Four Moments. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a0/