On Epsilon-Cores of Cooperative Games with Fuzzy Payoffs
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 282-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that, for cooperative games with transferable utility (and with crisp payoffs), the set of reasonable imputations is nonempty. It is also known for what values of $\varepsilon$ the set of reasonable imputations belongs to the $\varepsilon$-core. Then the $\varepsilon$-core is also nonempty. This result is of considerable interest, because the 0-core of a cooperative game can be empty, but if the $\varepsilon$-core is nonempty in this case for some small $\varepsilon>0$, then there exist imputations such that the difference in the properties between them and the imputations from the 0-core is small. In this paper, these results are generalized to the case of games with fuzzy payoffs.
Keywords: cooperative game, fuzzy number, reasonable imputation.
Mots-clés : epsilon-core
@article{MZM_2021_110_2_a9,
     author = {A. S. Shvedov},
     title = {On {Epsilon-Cores} of {Cooperative} {Games} with {Fuzzy} {Payoffs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {282--288},
     year = {2021},
     volume = {110},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a9/}
}
TY  - JOUR
AU  - A. S. Shvedov
TI  - On Epsilon-Cores of Cooperative Games with Fuzzy Payoffs
JO  - Matematičeskie zametki
PY  - 2021
SP  - 282
EP  - 288
VL  - 110
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a9/
LA  - ru
ID  - MZM_2021_110_2_a9
ER  - 
%0 Journal Article
%A A. S. Shvedov
%T On Epsilon-Cores of Cooperative Games with Fuzzy Payoffs
%J Matematičeskie zametki
%D 2021
%P 282-288
%V 110
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a9/
%G ru
%F MZM_2021_110_2_a9
A. S. Shvedov. On Epsilon-Cores of Cooperative Games with Fuzzy Payoffs. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 282-288. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a9/

[1] L. S. Shapley, M. Shubik, “Quasi-cores in a monetary economy with nonconvex preferences”, Econometrica, 34 (1966), 805–827 | DOI | Zbl

[2] M. Maschler, B. Peleg, L. S. Shapley, “Geometric properties of the kernel, nucleolus, and related solution concepts”, Math. Oper. Res., 4 (1979), 303–338 | DOI | MR | Zbl

[3] R. Mochaourab, E. Jorswieck, “Coalitional games in MISO interference channels: epsilon-core and coalition structure stable set”, IEEE Trans. Signal Process., 62 (2014), 6507–6520 | DOI | MR | Zbl

[4] M. Mares̆, Fuzzy Cooperative Games, Physica-Verlag, Heidelberg, 2001 | MR | Zbl

[5] L. Mallozzi, V. Scalzo, S. Tijs, “Fuzzy interval cooperative games”, Fuzzy Sets and Systems, 165 (2011), 98–105 | DOI | MR | Zbl

[6] H.-C. Wu, “Cores and dominance cores of cooperative games endowed with fuzzy payoffs”, Fuzzy Optim. Decis. Mak., 18 (2019), 219–257 | DOI | MR | Zbl

[7] A. S. Shvedov, “Instrumental variables estimation of fuzzy regression models”, J.Intelligent and Fuzzy Systems, 36 (2019), 5457–5462 | DOI

[8] A. S. Shvedov, “Kvantilnaya funktsiya nechetko-sluchainoi velichiny i vyrazheniya dlya ozhidanii”, Matem. zametki, 100:3 (2016), 455–460 | DOI | MR | Zbl

[9] J. Ramík, J. Římánek, “Inequality relation between fuzzy numbers and its use in fuzzy optimization”, Fuzzy Sets and Systems, 16 (1985), 123–138 | DOI | MR | Zbl