On Epsilon-Cores of Cooperative Games with Fuzzy Payoffs
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 282-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that, for cooperative games with transferable utility (and with crisp payoffs), the set of reasonable imputations is nonempty. It is also known for what values of $\varepsilon$ the set of reasonable imputations belongs to the $\varepsilon$-core. Then the $\varepsilon$-core is also nonempty. This result is of considerable interest, because the 0-core of a cooperative game can be empty, but if the $\varepsilon$-core is nonempty in this case for some small $\varepsilon>0$, then there exist imputations such that the difference in the properties between them and the imputations from the 0-core is small. In this paper, these results are generalized to the case of games with fuzzy payoffs.
Keywords: cooperative game, fuzzy number, reasonable imputation.
Mots-clés : epsilon-core
@article{MZM_2021_110_2_a9,
     author = {A. S. Shvedov},
     title = {On {Epsilon-Cores} of {Cooperative} {Games} with {Fuzzy} {Payoffs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {282--288},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a9/}
}
TY  - JOUR
AU  - A. S. Shvedov
TI  - On Epsilon-Cores of Cooperative Games with Fuzzy Payoffs
JO  - Matematičeskie zametki
PY  - 2021
SP  - 282
EP  - 288
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a9/
LA  - ru
ID  - MZM_2021_110_2_a9
ER  - 
%0 Journal Article
%A A. S. Shvedov
%T On Epsilon-Cores of Cooperative Games with Fuzzy Payoffs
%J Matematičeskie zametki
%D 2021
%P 282-288
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a9/
%G ru
%F MZM_2021_110_2_a9
A. S. Shvedov. On Epsilon-Cores of Cooperative Games with Fuzzy Payoffs. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 282-288. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a9/

[1] L. S. Shapley, M. Shubik, “Quasi-cores in a monetary economy with nonconvex preferences”, Econometrica, 34 (1966), 805–827 | DOI | Zbl

[2] M. Maschler, B. Peleg, L. S. Shapley, “Geometric properties of the kernel, nucleolus, and related solution concepts”, Math. Oper. Res., 4 (1979), 303–338 | DOI | MR | Zbl

[3] R. Mochaourab, E. Jorswieck, “Coalitional games in MISO interference channels: epsilon-core and coalition structure stable set”, IEEE Trans. Signal Process., 62 (2014), 6507–6520 | DOI | MR | Zbl

[4] M. Mares̆, Fuzzy Cooperative Games, Physica-Verlag, Heidelberg, 2001 | MR | Zbl

[5] L. Mallozzi, V. Scalzo, S. Tijs, “Fuzzy interval cooperative games”, Fuzzy Sets and Systems, 165 (2011), 98–105 | DOI | MR | Zbl

[6] H.-C. Wu, “Cores and dominance cores of cooperative games endowed with fuzzy payoffs”, Fuzzy Optim. Decis. Mak., 18 (2019), 219–257 | DOI | MR | Zbl

[7] A. S. Shvedov, “Instrumental variables estimation of fuzzy regression models”, J.Intelligent and Fuzzy Systems, 36 (2019), 5457–5462 | DOI

[8] A. S. Shvedov, “Kvantilnaya funktsiya nechetko-sluchainoi velichiny i vyrazheniya dlya ozhidanii”, Matem. zametki, 100:3 (2016), 455–460 | DOI | MR | Zbl

[9] J. Ramík, J. Římánek, “Inequality relation between fuzzy numbers and its use in fuzzy optimization”, Fuzzy Sets and Systems, 16 (1985), 123–138 | DOI | MR | Zbl