On Joint Universality of the Riemann Zeta-Function
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 221-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is obtained on the approximation of a collection of analytic functions in short intervals by a collection of shifts of the Riemann zeta-function $(\zeta(s+a_1\tau),\dots,\zeta(s+a_r\tau))$, where $a_1,\dots, a_r$ are algebraic numbers linearly independent over the field of rational numbers.
Keywords: zeta-function, weak convergence, joint universality.
@article{MZM_2021_110_2_a4,
     author = {A. Laurin\v{c}ikas},
     title = {On {Joint} {Universality} of the {Riemann} {Zeta-Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {221--233},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a4/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - On Joint Universality of the Riemann Zeta-Function
JO  - Matematičeskie zametki
PY  - 2021
SP  - 221
EP  - 233
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a4/
LA  - ru
ID  - MZM_2021_110_2_a4
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T On Joint Universality of the Riemann Zeta-Function
%J Matematičeskie zametki
%D 2021
%P 221-233
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a4/
%G ru
%F MZM_2021_110_2_a4
A. Laurinčikas. On Joint Universality of the Riemann Zeta-Function. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 221-233. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a4/

[1] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[2] B. Bagchi, The Statistical Behavior and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, Ph.D. Thesis, Indian Statist. Institute, Calcutta, 1981

[3] S. M. Gonek, Analytic Properties of Zeta and $L$-Functions, Ph.D. Thesis, University of Michigan, 1979 | MR

[4] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Acad. Publ., Dordrecht, 1996 | MR

[5] A. Laurinčikas, R. Garunkštis, The Lerch Zeta Function, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[6] J. Steuding, Value-Distribution of $L$-Functions, Lecture Notes in Math., 1877, Springer, Berlin, 2007 | MR | Zbl

[7] K. Matsumoto, “A survey of the theory of universality for zeta and $L$-functions”, Number Theory: Plowing and Staring Through High Wave Forms, Ser. Number Theory and its Appl., 11, World Sci. Publ., Hackensack, NJ, 2015, 95–144 | MR | Zbl

[8] S. M. Voronin, “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27 (1975), 493–503 | DOI | Zbl

[9] A. Laurinčikas, “Universality of the Riemann zeta-function in short intervals”, J. Number Theory, 204 (2019), 279–295 | DOI | MR | Zbl

[10] A. Laurinchikas, L. Meshka, “Utochnenie neravenstva universalnosti”, Matem. zametki, 96:6 (2014), 905–910 | DOI | MR | Zbl

[11] J.-L. Mauclaire, “Universality of the Riemann zeta-function: two remarks”, Ann. Univ. Sci. Budapest. Sect. Comput., 39 (2013), 311–319 | MR | Zbl

[12] A. Baker, “The theory of linear forms in logarithms”, Transcendence Theory: Advances and Applications, Academic Press, Boston, MA, 1977, 1–27 | MR

[13] P. Bilingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[14] A. Laurinchikas, “Sovmestnaya universalnost dzeta-funktsii s periodicheskimi koeffitsientami”, Izv. RAN. Ser. matem., 74:3 (2010), 79–102 | DOI | MR | Zbl

[15] H. Cramér, M. Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York, 1967 | MR | Zbl

[16] S. N. Mergelyan, “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2(48) (1952), 31–122 | MR | Zbl