The Fatou Property for General Approximate Identities on Metric Measure Spaces
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 204-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

Abstract approximate identities on metric measure spaces are considered in this paper. We find exact conditions on the geometry of domains for which the convergence of approximate identities occurs almost everywhere for functions from the spaces $L^p$, $p\ge 1$. The results are illustrated with examples of Poisson kernels and their powers in the unit ball in $\mathbb{R}^n$ or $\mathbb{C}^n$, and also of convolutions with dilatations on $\mathbb{R}^n$. In all these examples, the conditions found are exact.
Keywords: metric measure space, approximate identity, Fatou property
Mots-clés : Poisson integral.
@article{MZM_2021_110_2_a3,
     author = {G. A. Karagulyan and I. N. Katkovskaya and V. G. Krotov},
     title = {The {Fatou} {Property} for {General} {Approximate} {Identities} on {Metric} {Measure} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {204--220},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a3/}
}
TY  - JOUR
AU  - G. A. Karagulyan
AU  - I. N. Katkovskaya
AU  - V. G. Krotov
TI  - The Fatou Property for General Approximate Identities on Metric Measure Spaces
JO  - Matematičeskie zametki
PY  - 2021
SP  - 204
EP  - 220
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a3/
LA  - ru
ID  - MZM_2021_110_2_a3
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%A I. N. Katkovskaya
%A V. G. Krotov
%T The Fatou Property for General Approximate Identities on Metric Measure Spaces
%J Matematičeskie zametki
%D 2021
%P 204-220
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a3/
%G ru
%F MZM_2021_110_2_a3
G. A. Karagulyan; I. N. Katkovskaya; V. G. Krotov. The Fatou Property for General Approximate Identities on Metric Measure Spaces. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 204-220. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a3/

[1] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl

[2] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[3] J. E. Littlewood, “On a theorem of Fatou”, J. London Math. Soc., 2 (1927), 172–176 | DOI | MR | Zbl

[4] A. Zigmund, Trigonometricheskie ryady, t. 1, Mir, M., 1965 | MR

[5] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, New York, 2001 | MR | Zbl

[6] P. Sjögren, “Une remarque sur la convergence des fonctions propres du Laplasian à valeur propre critique”, Lect. Notes in Math., 1096, Springer, Berlin, 1984, 544–548 | DOI | MR

[7] J.-O. Rönning, “Convergence results for the square root of the Poisson kernel”, Math. Scand., 81 (1997), 219–235 | DOI | MR | Zbl

[8] I. N. Katkovskaya, V. G. Krotov, “O kasatelnom granichnom povedenii potentsialov”, Tr. In-ta matem. NAN Belarusi, 2 (1999), 63–72

[9] I. N. Katkovskaya, V G. Krotov, “Neravenstvo silnogo tipa dlya svertki s kornem kvadratnym iz yadra Puassona”, Matem. zametki, 75:4 (2004), 580–591 | DOI | MR | Zbl

[10] G. A. Karagulyan, M. H. Safaryan, “Generalizations of Fatou's theorem for the integrals with general kernels”, J. Geom. Anal., 25:3 (2014), 1459–1475 | DOI | MR

[11] M. H. Safaryan, “On generalizations of Fatou's theorem in $L^p$ for convolution integrals with general kernels”, J. Geom. Anal., 31:4 (2021), 3280–3299 | MR | Zbl

[12] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[13] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[14] U. Rudin, Teoriya funktsii v edinichnom share iz $\mathbb{C}^n$, Mir, M., 1984 | MR

[15] A. Korányi, “Harmonic functions on Hermitian hyperbolic space”, Trans. Amer. Math. Soc., 135 (1969), 507–516 | DOI | MR | Zbl

[16] V. G. Krotov, “Tochnaya otsenka granichnogo povedeniya funktsii iz klassov Khardi–Soboleva v kriticheskom sluchae”, Matem. zametki, 62:4 (1997), 527–539 | DOI | MR | Zbl

[17] E. M. Stein, “Limits of Sequences of Operators”, Ann. Math., 74:1 (1961), 140–170 | DOI | MR | Zbl

[18] A. Nagel, W. Rudin, J. Shapiro, “Tangential boundary behavior of function in Dirichlet-type spaces”, Ann. Math., 116:2 (1982), 331–360 | DOI | MR | Zbl

[19] A. Nagel, E. M. Stein, “On certain maximal functions and approach regions”, Adv. Math., 54:1 (1984), 83–106 | DOI | MR | Zbl

[20] V. G. Krotov, “Otsenki dlya maksimalnykh operatorov, svyazannykh s granichnym povedeniem, i ikh prilozheniya”, Teoriya funktsii, Materialy Vsesoyuznoi shkoly po teorii funktsii, Tr. MIAN SSSR, 190, Nauka, M., 1989, 117–138 | MR | Zbl