The Fatou Property for General Approximate Identities on Metric Measure Spaces
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 204-220

Voir la notice de l'article provenant de la source Math-Net.Ru

Abstract approximate identities on metric measure spaces are considered in this paper. We find exact conditions on the geometry of domains for which the convergence of approximate identities occurs almost everywhere for functions from the spaces $L^p$, $p\ge 1$. The results are illustrated with examples of Poisson kernels and their powers in the unit ball in $\mathbb{R}^n$ or $\mathbb{C}^n$, and also of convolutions with dilatations on $\mathbb{R}^n$. In all these examples, the conditions found are exact.
Keywords: metric measure space, approximate identity, Fatou property
Mots-clés : Poisson integral.
@article{MZM_2021_110_2_a3,
     author = {G. A. Karagulyan and I. N. Katkovskaya and V. G. Krotov},
     title = {The {Fatou} {Property} for {General} {Approximate} {Identities} on {Metric} {Measure} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {204--220},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a3/}
}
TY  - JOUR
AU  - G. A. Karagulyan
AU  - I. N. Katkovskaya
AU  - V. G. Krotov
TI  - The Fatou Property for General Approximate Identities on Metric Measure Spaces
JO  - Matematičeskie zametki
PY  - 2021
SP  - 204
EP  - 220
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a3/
LA  - ru
ID  - MZM_2021_110_2_a3
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%A I. N. Katkovskaya
%A V. G. Krotov
%T The Fatou Property for General Approximate Identities on Metric Measure Spaces
%J Matematičeskie zametki
%D 2021
%P 204-220
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a3/
%G ru
%F MZM_2021_110_2_a3
G. A. Karagulyan; I. N. Katkovskaya; V. G. Krotov. The Fatou Property for General Approximate Identities on Metric Measure Spaces. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 204-220. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a3/