On the Volterra Factorization of the Wiener--Hopf Integral Operator
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the factorization of the Wiener–Hopf integral operator in the form of the product of the upper and lower Volterra operators is considered. Conditions for the existence of such a factorization are obtained. The application of this factorization to Wiener–Hopf integral equations of the first kind can reduce the study of certain classes of such equations to that of the corresponding Volterra equations of the first kind.
Keywords: Volterra factorization of the Wiener–Hopf operator, conservativity conditions, integral equations of the first kind.
@article{MZM_2021_110_2_a0,
     author = {L. G. Arabadzhyan},
     title = {On the {Volterra} {Factorization} of the {Wiener--Hopf} {Integral} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a0/}
}
TY  - JOUR
AU  - L. G. Arabadzhyan
TI  - On the Volterra Factorization of the Wiener--Hopf Integral Operator
JO  - Matematičeskie zametki
PY  - 2021
SP  - 163
EP  - 169
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a0/
LA  - ru
ID  - MZM_2021_110_2_a0
ER  - 
%0 Journal Article
%A L. G. Arabadzhyan
%T On the Volterra Factorization of the Wiener--Hopf Integral Operator
%J Matematičeskie zametki
%D 2021
%P 163-169
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a0/
%G ru
%F MZM_2021_110_2_a0
L. G. Arabadzhyan. On the Volterra Factorization of the Wiener--Hopf Integral Operator. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a0/

[1] N. B. Engibaryan, A. A. Arutyunyan, “Integralnye uravneniya na polupryamoi s raznostnymi yadrami i nelineinye funktsionalnye uravneniya”, Matem. sb., 97 (139):1 (5) (1975), 35–58 | MR | Zbl

[2] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. anal., 22, VINITI, M., 1984, 175–244 | MR | Zbl

[3] N. B. Engibaryan, L. G. Arabadzhyan, “O nekotorykh zadachakh faktorizatsii dlya integralnykh operatorov tipa svertki”, Differents. uravneniya, 26:8 (1990), 1442–1452 | MR | Zbl

[4] L. G. Arabadzhyan, “O faktorizatsii konservativnykh integralnykh operatorov tipa svertki s medlenno ubyvayuschimi yadrami”, Differents. uravneniya, 38:3 (2002), 408–410 | MR | Zbl

[5] N. B. Engibaryan, B. N. Engibaryan, “Integralnoe uravnenie svertki na polupryamoi s vpolne monotonnym yadrom”, Matem. sb., 187:10 (1996), 53–72 | DOI | MR | Zbl

[6] L. G. Arabadzhyan, “Ob integralnom uravnenii Vinera–Khopfa v zakriticheskom sluchae”, Matem. zametki, 76:1 (2004), 11–19 | DOI | MR | Zbl

[7] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[8] M. S. Gevorgyan, “O zadachakh perenosa v beskonechnoi srede”, Astrofizika, 14:3 (1978), 527–530 | MR

[9] F. Trikomi, Integralnye uravneniya, IL, M., 1960 | MR

[10] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | MR | Zbl