Comparison of Arithmetic, Geometric, and Harmonic Means
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 110-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main purpose of the paper is to strengthen the results of P. R. Mercer (2003) concerning the comparison of arithmetic, geometric, and harmonic weighted means.
Keywords: arithmetic mean, geometric mean, harmonic mean.
@article{MZM_2021_110_1_a9,
     author = {L. V. Rozovskii},
     title = {Comparison of {Arithmetic,} {Geometric,} and {Harmonic} {Means}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {110--118},
     year = {2021},
     volume = {110},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a9/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - Comparison of Arithmetic, Geometric, and Harmonic Means
JO  - Matematičeskie zametki
PY  - 2021
SP  - 110
EP  - 118
VL  - 110
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a9/
LA  - ru
ID  - MZM_2021_110_1_a9
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T Comparison of Arithmetic, Geometric, and Harmonic Means
%J Matematičeskie zametki
%D 2021
%P 110-118
%V 110
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a9/
%G ru
%F MZM_2021_110_1_a9
L. V. Rozovskii. Comparison of Arithmetic, Geometric, and Harmonic Means. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 110-118. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a9/

[1] D. I. Cartwright, M. J. Field, “A refinement of the arithmetic mean geometric mean inequality”, Proc. Amer. Math. Soc., 71 (1978), 36–38 | DOI | MR

[2] H. Alzer, “A new refinement of the arithmetic mean-geometric mean inequality”, Rocky Mountain J. Math., 27:3 (1997), 663–667 | DOI | MR

[3] A. M. Mercer, “Bounds for $A$–$G$, $A$–$H$, $G$–$H$ and a family of inequalities of Ky Fan's type, using a general method”, J. Math. Anal. Appl., 243 (2000), 163–173 | DOI | MR

[4] P. R. Mercer, “Refined arithmetic, geometric and harmonic mean inequalities”, Rocky Mountain J. Math., 33:4 (2003), 1459–1464 | DOI | MR

[5] S. G. From, R. Suthakaran, “Some new refinements of the arithmetic, geometric and harmonic mean inequalities with applications”, Appl. Math. Sci., 10:52 (2016), 2553–2569 | DOI

[6] D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Acad. Publ., Dordrecht, 1995 | MR

[7] B. Rodin, “Variance and the inequality of arithmetic and geometric means”, Rocky Mountain J. Math., 47:2 (2017), 637–648 | DOI | MR

[8] L. Rozovsky, “Variance and the weighted AM–GM inequality”, Rocky Mountain J. Math., 2021 (to appear)

[9] I. Pinelis, “Exact upper and lower bounds of the difference between the arithmetic and geometric means”, Bull. Aust. Math. Soc., 92 (2015), 149–158 | DOI | MR