Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_1_a9, author = {L. V. Rozovskii}, title = {Comparison of {Arithmetic,} {Geometric,} and {Harmonic} {Means}}, journal = {Matemati\v{c}eskie zametki}, pages = {110--118}, publisher = {mathdoc}, volume = {110}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a9/} }
L. V. Rozovskii. Comparison of Arithmetic, Geometric, and Harmonic Means. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 110-118. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a9/
[1] D. I. Cartwright, M. J. Field, “A refinement of the arithmetic mean geometric mean inequality”, Proc. Amer. Math. Soc., 71 (1978), 36–38 | DOI | MR
[2] H. Alzer, “A new refinement of the arithmetic mean-geometric mean inequality”, Rocky Mountain J. Math., 27:3 (1997), 663–667 | DOI | MR
[3] A. M. Mercer, “Bounds for $A$–$G$, $A$–$H$, $G$–$H$ and a family of inequalities of Ky Fan's type, using a general method”, J. Math. Anal. Appl., 243 (2000), 163–173 | DOI | MR
[4] P. R. Mercer, “Refined arithmetic, geometric and harmonic mean inequalities”, Rocky Mountain J. Math., 33:4 (2003), 1459–1464 | DOI | MR
[5] S. G. From, R. Suthakaran, “Some new refinements of the arithmetic, geometric and harmonic mean inequalities with applications”, Appl. Math. Sci., 10:52 (2016), 2553–2569 | DOI
[6] D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Acad. Publ., Dordrecht, 1995 | MR
[7] B. Rodin, “Variance and the inequality of arithmetic and geometric means”, Rocky Mountain J. Math., 47:2 (2017), 637–648 | DOI | MR
[8] L. Rozovsky, “Variance and the weighted AM–GM inequality”, Rocky Mountain J. Math., 2021 (to appear)
[9] I. Pinelis, “Exact upper and lower bounds of the difference between the arithmetic and geometric means”, Bull. Aust. Math. Soc., 92 (2015), 149–158 | DOI | MR