A Theorem of Sylvester--Gallai Type for Abelian Groups
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 99-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite subset $X$ of an Abelian group $A$ with respect to addition is called a Sylvester–Gallai set of type $m$ if $|X|\ge m$ and, for every distinct $x_1,\dots,x_{m-1} \in X$, there is an element $x_m \in X \setminus \{x_1,\dots,x_{m-1}\}$ such that $$ x_1+\dots+x_m=o_A, $$ where $o_A$ stands for the zero of the group $A$. We describe all Sylvester–Gallai sets of type $m$. As a consequence, we obtain the following result: if $Y$is a finite set of points on an elliptic curve in $\mathbb P^2(\mathbb C)$ and (A) if, for every two distinct points $x_1,x_2 \in Y$, there is a point $x_3 \in Y \setminus \{x_1,x_2\}$ collinear to $x_1$ and $x_2$, then either $Y$ is a Hesse configuration of an elliptic curve or $Y$ consists of three points lying on the same line; (B) if, for every five distinct points $x_1,\dots,x_5 \in Y$, there is a point $x_6 \in Y \setminus \{x_1,\dots,x_{5}\}$ such that $x_1,\dots,x_6$ lie on the same conic, then $Y$ consists of six points lying on the same conic.
Keywords: Sylvester–Gallai theorem, configurations of points and conics, elliptic curves.
Mots-clés : configurations of points and lines
@article{MZM_2021_110_1_a8,
     author = {F. K. Nilov and A. A. Polyanskii},
     title = {A {Theorem} of {Sylvester--Gallai} {Type} for {Abelian} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {99--109},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a8/}
}
TY  - JOUR
AU  - F. K. Nilov
AU  - A. A. Polyanskii
TI  - A Theorem of Sylvester--Gallai Type for Abelian Groups
JO  - Matematičeskie zametki
PY  - 2021
SP  - 99
EP  - 109
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a8/
LA  - ru
ID  - MZM_2021_110_1_a8
ER  - 
%0 Journal Article
%A F. K. Nilov
%A A. A. Polyanskii
%T A Theorem of Sylvester--Gallai Type for Abelian Groups
%J Matematičeskie zametki
%D 2021
%P 99-109
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a8/
%G ru
%F MZM_2021_110_1_a8
F. K. Nilov; A. A. Polyanskii. A Theorem of Sylvester--Gallai Type for Abelian Groups. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 99-109. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a8/

[1] J. J. Sylvester, “Mathematical Question 11851”, Educational Times, 59 (1983), 59

[2] P. Erdős, “Problem 4065”, Amer. Math. Monthly, 50 (1943), 65

[3] T. Gallai, “Solution to problem number 4065”, Amer. Math. Monthly, 51:3, 169–171 \year 1944

[4] S. A. Naimpally, R. G. Buschman, Kwangil Koh, B. R. Toskey, P. M. Weichsel, K. E. Whipple, D. Rearick, H. F. Mattson, E. F. Assmus Jr., J.-P. Serre, “Advanced Problems: 5350–5359”, Amer. Math. Monthly, 73:1, 89 \year 1966 | DOI

[5] L. M. Kelly, “A resolution of the Sylvester–Gallai problem of J.-P. Serre”, Discrete Comput. Geom., 1:2, 101–104 \year 1986 | DOI | MR

[6] N. Elkies, L. M. Pretorius, K. J. Swanepoel, “Sylvester–Gallai Theorems for Complex Numbers and Quaternions”, Discrete Comput. Geom., 35:3, 361–373 \year 2006 | DOI | MR

[7] J. A. Wiseman, P. R. Wilson, “A Sylvester theorem for conic sections”, Discrete Comput. Geom., 3:4, 295–305 \year 1988 | DOI | MR

[8] S. Tabachnikov, V. Timorin, “Pryamaya Silvestra (okonchanie)”, Kvant, 2009, no. 6, 6–9

[9] P. Keevash, The Existence of Designs, 2014, arXiv: 1401.3665

[10] D. Král', E. Máčajová, A. Pór, J.-S. Sereni, “Characterisation results for Steiner triple systems and their application to edge-colourings of cubic graphs”, Canad. J. Math., 62:2, 355–381 \year 2010 | MR

[11] K. Petelczyc, M. Prażmowska, K. Prażmowski, M. Żynel, “A note on characterizations of affine and Hall triple systems”, Discrete Math., 312:15, 2394–2396 \year 2012 | DOI | MR

[12] M. J. Grannell, T. S. Griggs, E. Mendelsohn, “A small basis for four-line configurations in Steiner triple systems”, J. Combin. Des., 3:1, 51–59 \year 1995 | DOI | MR

[13] D. R. Stinson, Y. J. Wei, “Some results on quadrilaterals in Steiner triple systems”, Discrete Math., 105:1-3, 207–219 \year 1992 | MR