A Theorem of Sylvester--Gallai Type for Abelian Groups
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 99-109

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite subset $X$ of an Abelian group $A$ with respect to addition is called a Sylvester–Gallai set of type $m$ if $|X|\ge m$ and, for every distinct $x_1,\dots,x_{m-1} \in X$, there is an element $x_m \in X \setminus \{x_1,\dots,x_{m-1}\}$ such that $$ x_1+\dots+x_m=o_A, $$ where $o_A$ stands for the zero of the group $A$. We describe all Sylvester–Gallai sets of type $m$. As a consequence, we obtain the following result: if $Y$is a finite set of points on an elliptic curve in $\mathbb P^2(\mathbb C)$ and (A) if, for every two distinct points $x_1,x_2 \in Y$, there is a point $x_3 \in Y \setminus \{x_1,x_2\}$ collinear to $x_1$ and $x_2$, then either $Y$ is a Hesse configuration of an elliptic curve or $Y$ consists of three points lying on the same line; (B) if, for every five distinct points $x_1,\dots,x_5 \in Y$, there is a point $x_6 \in Y \setminus \{x_1,\dots,x_{5}\}$ such that $x_1,\dots,x_6$ lie on the same conic, then $Y$ consists of six points lying on the same conic.
Keywords: Sylvester–Gallai theorem, configurations of points and conics, elliptic curves.
Mots-clés : configurations of points and lines
@article{MZM_2021_110_1_a8,
     author = {F. K. Nilov and A. A. Polyanskii},
     title = {A {Theorem} of {Sylvester--Gallai} {Type} for {Abelian} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {99--109},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a8/}
}
TY  - JOUR
AU  - F. K. Nilov
AU  - A. A. Polyanskii
TI  - A Theorem of Sylvester--Gallai Type for Abelian Groups
JO  - Matematičeskie zametki
PY  - 2021
SP  - 99
EP  - 109
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a8/
LA  - ru
ID  - MZM_2021_110_1_a8
ER  - 
%0 Journal Article
%A F. K. Nilov
%A A. A. Polyanskii
%T A Theorem of Sylvester--Gallai Type for Abelian Groups
%J Matematičeskie zametki
%D 2021
%P 99-109
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a8/
%G ru
%F MZM_2021_110_1_a8
F. K. Nilov; A. A. Polyanskii. A Theorem of Sylvester--Gallai Type for Abelian Groups. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 99-109. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a8/