Elliptic Differential-Difference Equations of General Form in the Half-Space
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 90-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Dirichlet problem in the half-space for elliptic differential-difference equations with operators that are compositions of differential operators and shift operators not bound by commensurability conditions for shifts. For this problem, we establish classical solvability or solvability almost everywhere (depending on the constraints imposed on the boundary data), construct an integral representation of the solution by means of a Poisson-type formula, and prove that it approaches to zero as the time-like independent variable tends to infinity.
Keywords: differential-difference equations, elliptic problems, incommensurable shifts.
@article{MZM_2021_110_1_a7,
     author = {A. B. Muravnik},
     title = {Elliptic {Differential-Difference} {Equations} of {General} {Form} in the {Half-Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {90--98},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a7/}
}
TY  - JOUR
AU  - A. B. Muravnik
TI  - Elliptic Differential-Difference Equations of General Form in the Half-Space
JO  - Matematičeskie zametki
PY  - 2021
SP  - 90
EP  - 98
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a7/
LA  - ru
ID  - MZM_2021_110_1_a7
ER  - 
%0 Journal Article
%A A. B. Muravnik
%T Elliptic Differential-Difference Equations of General Form in the Half-Space
%J Matematičeskie zametki
%D 2021
%P 90-98
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a7/
%G ru
%F MZM_2021_110_1_a7
A. B. Muravnik. Elliptic Differential-Difference Equations of General Form in the Half-Space. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 90-98. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a7/

[1] V. A. Kondratev, E. M. Landis, “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 32, VINITI, M., 1988, 99–215 | MR | Zbl

[2] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[3] M. A. Vorontsov, N. G. Iroshnikov, R. L. Abernathy, “Diffractive patterns in a nonlinear optical two-dimensional feedback system with field rotation”, Chaos, Solitons, and Fractals, 4:8-9 (1994), 1701–1716 | DOI

[4] A. L. Skubachevskii, “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 34:10 (1998), 1394–1401 | MR

[5] A. L. Skubachevskii, “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 261–278 | DOI | MR

[6] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser Verlag, Basel, 1997 | MR

[7] A. L. Skubachevskii, “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, UMN, 71:5 (431) (2016), 3–112 | DOI | MR | Zbl

[8] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. I”, SMFN, 26, RUDN, M., 2007, 3–132 | MR | Zbl

[9] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. II”, Uravneniya v chastnykh proizvodnykh, SMFN, 33, RUDN, M., 2009, 3–179 | MR

[10] P. L. Gurevich, “Ellipticheskie zadachi s nelokalnymi kraevymi usloviyami i polugruppy Fellera”, Uravneniya v chastnykh proizvodnykh, SMFN, 38, RUDN, M., 2010, 3–173 | MR | Zbl

[11] A. B. Muravnik, “Ellipticheskie differentsialno-raznostnye uravneniya v poluprostranstve”, Matem. zametki, 108:5 (2020), 764–770 | DOI | MR

[12] A. B. Muravnik, “O zadache Dirikhle v poluploskosti dlya differentsialno-raznostnykh ellipticheskikh uravnenii”, SMFN, 60, RUDN, M., 2016, 102–113

[13] A. B. Muravnik, “Asimptoticheskie svoistva reshenii zadachi Dirikhle v poluploskosti dlya nekotorykh differentsialno-raznostnykh ellipticheskikh uravnenii”, Matem. zametki, 100:4 (2016), 566–576 | DOI | MR

[14] A. B. Muravnik, “On the half-plane Dirichlet problem for differential-difference elliptic equations with several nonlocal terms”, Math. Model. Nat. Phenom., 12:6 (2017), 130–143 | DOI | MR

[15] A. B. Muravnik, “Asimptoticheskie svoistva reshenii dvumernykh differentsialno-raznostnykh ellipticheskikh zadach”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 4, Rossiiskii universitet druzhby narodov, M., 2017, 678–688 | DOI

[16] I. M. Gelfand, G. E. Shilov, “Preobrazovaniya Fure bystro rastuschikh funktsiii voprosy edinstvennosti resheniya zadachi Koshi”, UMN, 8:6 (58) (1953), 3–54 | MR | Zbl

[17] A. B. Muravnik, “O stabilizatsii reshenii singulyarnykh ellipticheskikh uravnenii”, Fundament. i prikl. matem., 12:4 (2006), 169–186 | MR | Zbl

[18] G. E. Shilov, Matematicheskii analiz. Vtoroi spetsialnyi kurs, Izd-vo Mosk. un-ta, M., 1984

[19] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 3. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR | Zbl