On Matrices Having $J_m(1)\oplus J_m(1)$ as the Cosquare
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

If the cosquares of complex matrices $A$ and $B$ are similar and there is a unimodular number in the spectrum of the cosquares, then $A$ and $B$ are not necessarily congruent. Assume that such an eigenvalue $\lambda_0$ is unique. In this case, so far, one could verify the congruence of $A$ and $B$ by using a rational algorithm only in two situations: (1)the eigenvalue $\lambda_0$ is simple or semi-simple; (2)there is only one Jordan block associated with $\lambda_0$ in the Jordan form of the cosquares. We propose a rational algorithm for checking congruence in the case where two Jordan blocks of the same order are associated with $\lambda_0$.
Mots-clés : congruences, rational algorithm.
Keywords: canonical form, cosquare
@article{MZM_2021_110_1_a5,
     author = {Kh. D. Ikramov},
     title = {On {Matrices} {Having} $J_m(1)\oplus J_m(1)$ as the {Cosquare}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On Matrices Having $J_m(1)\oplus J_m(1)$ as the Cosquare
JO  - Matematičeskie zametki
PY  - 2021
SP  - 65
EP  - 74
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a5/
LA  - ru
ID  - MZM_2021_110_1_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On Matrices Having $J_m(1)\oplus J_m(1)$ as the Cosquare
%J Matematičeskie zametki
%D 2021
%P 65-74
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a5/
%G ru
%F MZM_2021_110_1_a5
Kh. D. Ikramov. On Matrices Having $J_m(1)\oplus J_m(1)$ as the Cosquare. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 65-74. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a5/

[1] Kh. D. Ikramov, “O parametrakh singulyarnoi chasti regulyarizuyuschego razlozheniya Sergeichuka–Khorna”, Dokl. AN, 481:1 (2018), 7–9 | DOI

[2] Kh. D. Ikramov, “O kongruentnom vydelenii zhordanovykh blokov iz vyrozhdennoi kvadratnoi matritsy”, Sib. zhurn. vychisl. matem., 21:3 (2018), 255–258 | DOI

[3] Kh. D. Ikramov, “O konechnykh spektralnykh protsedurakh v lineinoi algebre”, Programmirovanie, 1994, no. 1, 56–69

[4] Kh. D. Ikramov, V. A. Usov, “Algoritm, proveryayuschii kongruentnost kompleksnykh matrits pri nalichii unimodulyarnykh sobstvennykh chisel v spektre kokvadratov”, Vestn. Mosk. un-ta. Seriya 15. Vychisl. matem. i kibern., 2020, no. 4, 18–26 | MR

[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966 | MR

[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 2013 | MR