Keywords: canonical form, cosquare
@article{MZM_2021_110_1_a5,
author = {Kh. D. Ikramov},
title = {On {Matrices} {Having} $J_m(1)\oplus J_m(1)$ as the {Cosquare}},
journal = {Matemati\v{c}eskie zametki},
pages = {65--74},
year = {2021},
volume = {110},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a5/}
}
Kh. D. Ikramov. On Matrices Having $J_m(1)\oplus J_m(1)$ as the Cosquare. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 65-74. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a5/
[1] Kh. D. Ikramov, “O parametrakh singulyarnoi chasti regulyarizuyuschego razlozheniya Sergeichuka–Khorna”, Dokl. AN, 481:1 (2018), 7–9 | DOI
[2] Kh. D. Ikramov, “O kongruentnom vydelenii zhordanovykh blokov iz vyrozhdennoi kvadratnoi matritsy”, Sib. zhurn. vychisl. matem., 21:3 (2018), 255–258 | DOI
[3] Kh. D. Ikramov, “O konechnykh spektralnykh protsedurakh v lineinoi algebre”, Programmirovanie, 1994, no. 1, 56–69
[4] Kh. D. Ikramov, V. A. Usov, “Algoritm, proveryayuschii kongruentnost kompleksnykh matrits pri nalichii unimodulyarnykh sobstvennykh chisel v spektre kokvadratov”, Vestn. Mosk. un-ta. Seriya 15. Vychisl. matem. i kibern., 2020, no. 4, 18–26 | MR
[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966 | MR
[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 2013 | MR