Quotient Divisible Groups of Rank~2
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 37-51

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, representations of torsion-free Abelian groups of rank $2$ using torsion-free groups of rank $1$ are studied. Necessary and sufficient conditions are found under which a group given by such a representation is quotient divisible. A criterion is obtained for two $p$-minimal quotient divisible torsion-free groups of rank $2$ to be isomorphic to each other. An example is constructed showing that two such groups can be embedded in each other but be not isomorphic. A series of properties of fundamental systems of elements of quotient divisible groups of arbitrary finite rank is established.
Keywords: Abelian group, group of rank $2$.
Mots-clés : quotient divisible group, quotient divisible envelope
@article{MZM_2021_110_1_a3,
     author = {M. N. Zonov and E. A. Timoshenko},
     title = {Quotient {Divisible} {Groups} of {Rank~2}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {37--51},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a3/}
}
TY  - JOUR
AU  - M. N. Zonov
AU  - E. A. Timoshenko
TI  - Quotient Divisible Groups of Rank~2
JO  - Matematičeskie zametki
PY  - 2021
SP  - 37
EP  - 51
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a3/
LA  - ru
ID  - MZM_2021_110_1_a3
ER  - 
%0 Journal Article
%A M. N. Zonov
%A E. A. Timoshenko
%T Quotient Divisible Groups of Rank~2
%J Matematičeskie zametki
%D 2021
%P 37-51
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a3/
%G ru
%F MZM_2021_110_1_a3
M. N. Zonov; E. A. Timoshenko. Quotient Divisible Groups of Rank~2. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a3/