Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_1_a3, author = {M. N. Zonov and E. A. Timoshenko}, title = {Quotient {Divisible} {Groups} of {Rank~2}}, journal = {Matemati\v{c}eskie zametki}, pages = {37--51}, publisher = {mathdoc}, volume = {110}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a3/} }
M. N. Zonov; E. A. Timoshenko. Quotient Divisible Groups of Rank~2. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a3/
[1] L. Fuchs, Abelian Groups, Springer, Cham, 2015 | MR
[2] R. A. Beaumont, R. S. Pierce, “Torsion-free rings”, Illinois J. Math., 5:1 (1961), 61–98 | DOI | MR
[3] A. Fomin, W. Wickless, “Quotient divisible abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | DOI | MR
[4] A. A. Fomin, “Abelevy gruppy so svobodnymi podgruppami beskonechnogo indeksa i ikh koltsa endomorfizmov”, Matem. zametki, 36:2 (1984), 179–187 | MR | Zbl
[5] A. V. Tsarev, “Psevdoratsionalnyi rang faktorno delimoi gruppy”, Fundament. i prikl. matem., 11:3 (2005), 201–213 | MR | Zbl
[6] O. I. Davydova, “Faktorno delimye gruppy ranga 1”, Fundament. i prikl. matem., 13:3 (2007), 25–33 | MR | Zbl
[7] A. Fomin, “Invariants for abelian groups and dual exact sequences”, J. Algebra, 322:7 (2009), 2544–2565 | DOI | MR
[8] A. V. Tsarev, “Modul psevdoratsionalnykh otnoshenii faktorno delimoi gruppy”, Algebra i analiz, 22:1 (2010), 223–239 | MR | Zbl
[9] O. S. Guseva, A. V. Tsarev, “Koltsa, $p$-rangi kotorykh ne prevoskhodyat 1”, Matem. sb., 205:4 (2014), 21–32 | DOI | MR | Zbl
[10] A. A. Fomin, “K teorii faktorno delimykh grupp. I”, Fundament. i prikl. matem., 17:8 (2012), 153–167
[11] A. A. Fomin, “K teorii faktorno delimykh grupp. II”, Fundament. i prikl. matem., 20:5 (2015), 157–196 | MR
[12] L. Fuchs, “On subdirect unions, I”, Acta Math. Acad. Sci. Hungar., 3:1-2 (1952), 103–120 | DOI | MR
[13] R. A. Beaumont, R. J. Wisner, “Rings with additive group which is a torsion-free group of rank two”, Acta Sci. Math. (Szeged), 20:2-3 (1959), 105–116 | MR
[14] R. A. Beaumont, R. S. Pierce, “Torsion free groups of rank two”, Mem. Amer. Math. Soc., 38 (1961), Amer. Math. Soc., Providence, RI | MR
[15] D. M. Arnold, Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in Math., 931, Springer, Berlin, 1982 | DOI | MR