Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_6_a7, author = {S. A. Sergeev}, title = {Asymptotics of the {Head} {Wave} in the {Cauchy} {Problem} for a {Difference} {Scheme} {Corresponding} to the {Two-Dimensional} {Wave} {Equation} with {Localized} {Initial} {Data}}, journal = {Matemati\v{c}eskie zametki}, pages = {884--900}, publisher = {mathdoc}, volume = {109}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a7/} }
TY - JOUR AU - S. A. Sergeev TI - Asymptotics of the Head Wave in the Cauchy Problem for a Difference Scheme Corresponding to the Two-Dimensional Wave Equation with Localized Initial Data JO - Matematičeskie zametki PY - 2021 SP - 884 EP - 900 VL - 109 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a7/ LA - ru ID - MZM_2021_109_6_a7 ER -
%0 Journal Article %A S. A. Sergeev %T Asymptotics of the Head Wave in the Cauchy Problem for a Difference Scheme Corresponding to the Two-Dimensional Wave Equation with Localized Initial Data %J Matematičeskie zametki %D 2021 %P 884-900 %V 109 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a7/ %G ru %F MZM_2021_109_6_a7
S. A. Sergeev. Asymptotics of the Head Wave in the Cauchy Problem for a Difference Scheme Corresponding to the Two-Dimensional Wave Equation with Localized Initial Data. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 884-900. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a7/
[1] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl
[2] V. P. Maslov, V. G. Danilov, “Printsip dvoistvennosti Pontryagina dlya vychisleniya, effekta tipa Cherenkova v kristallakh i raznostnykh skhemakh. I”, Sovremennye problemy matematiki. Differentsialnye uravneniya, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 166, 1984, 130–160 | MR | Zbl
[3] V. P. Maslov, V. G. Danilov, “Printsip dvoistvennosti Pontryagina dlya vychisleniya effekta tipa Cherenkova v kristallakh i raznostnykh skhemakh. II”, Sovremennye problemy matematiki. Matematicheskii analiz, algebra, topologiya, Tr. MIAN SSSR, 167, 1985, 96–107 | MR | Zbl
[4] V. G. Danilov, P. N. Zhevandrov, “O metode Maslova postroeniya kombinirovannykh asimptotik dlya $h$-psevdodifferentsialnykh uravnenii”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 411–424 | MR | Zbl
[5] S. A. Sergeev, “Asimptoticheskie resheniya zadachi Koshi s lokalizovannymi nachalnymi dannymi dlya raznostnoi skhemy, otvechayuschei odnomernomu volnovomu uravneniyu”, Matem. zametki, 106:5 (2019), 744–760 | DOI | MR
[6] V. V. Grushin, S. A. Sergeev, “Asymptotic of the propagation problem for linear waves on a two-dimensional lattice and modified Maslov's canonical operator”, Russ. J. Math. Phys., 27:1 (2020), 31–47 | DOI | MR
[7] S. Yu. Dobrokhotov, V. E. Nazakinskii, “Propagation of a linear wave created by a spatially localized perturbation in a regular lattice and punctured Lagrangian manifold”, Russ. J. Math. Phys., 24:1 (2017), 127–133 | DOI | MR
[8] A. A. Samarskii, Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR
[9] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[10] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. matem., 81:2 (2017), 53–96 | DOI | MR
[11] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR
[12] S. Yu. Dobrokhotov, V. E. Nazakinskii, A. A. Tolchennikov, “Uniform formulas for the asymptotic solution of a linear pseudodifferential equation describing water waves generated by a localized source”, Russ. J. Math. Phys., 27:2 (2020), 185–191 | DOI | MR
[13] V. E. Nazaikinskii, V. E. Shatalov, B. Yu. Sternin, Methods of Noncommutative Analysis. Theory and Applications, De Gruyter Stud. Math., 22, Walter de Gruyter, Berlin, 1996 | MR
[14] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized waves and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR