Asymptotics of the Head Wave in the Cauchy Problem for a Difference Scheme Corresponding to the Two-Dimensional Wave Equation with Localized Initial Data
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 884-900.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotics for the head wave in the Cauchy problem for the pseudodifferential equation corresponding to a difference scheme for the wave equation with localized initial data is constructed. Dispersive effects appear in the head wave, depending on the relation between the parameters of the problem. In the case of strong dispersive effects, the uniform asymptotic behavior of the head wave in a sufficiently large neighborhood of the leading front is constructed. Moreover, such an asymptotics can be represented in terms of Jacobi theta-functions in the case where the initial function has the form of a Gaussian exponential.
Keywords: wave asymptotics, wave equation, difference scheme, Maslov canonical operator.
@article{MZM_2021_109_6_a7,
     author = {S. A. Sergeev},
     title = {Asymptotics of the {Head} {Wave} in the {Cauchy} {Problem} for a {Difference} {Scheme} {Corresponding} to the {Two-Dimensional} {Wave} {Equation} with {Localized} {Initial} {Data}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {884--900},
     publisher = {mathdoc},
     volume = {109},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a7/}
}
TY  - JOUR
AU  - S. A. Sergeev
TI  - Asymptotics of the Head Wave in the Cauchy Problem for a Difference Scheme Corresponding to the Two-Dimensional Wave Equation with Localized Initial Data
JO  - Matematičeskie zametki
PY  - 2021
SP  - 884
EP  - 900
VL  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a7/
LA  - ru
ID  - MZM_2021_109_6_a7
ER  - 
%0 Journal Article
%A S. A. Sergeev
%T Asymptotics of the Head Wave in the Cauchy Problem for a Difference Scheme Corresponding to the Two-Dimensional Wave Equation with Localized Initial Data
%J Matematičeskie zametki
%D 2021
%P 884-900
%V 109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a7/
%G ru
%F MZM_2021_109_6_a7
S. A. Sergeev. Asymptotics of the Head Wave in the Cauchy Problem for a Difference Scheme Corresponding to the Two-Dimensional Wave Equation with Localized Initial Data. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 884-900. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a7/

[1] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[2] V. P. Maslov, V. G. Danilov, “Printsip dvoistvennosti Pontryagina dlya vychisleniya, effekta tipa Cherenkova v kristallakh i raznostnykh skhemakh. I”, Sovremennye problemy matematiki. Differentsialnye uravneniya, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 166, 1984, 130–160 | MR | Zbl

[3] V. P. Maslov, V. G. Danilov, “Printsip dvoistvennosti Pontryagina dlya vychisleniya effekta tipa Cherenkova v kristallakh i raznostnykh skhemakh. II”, Sovremennye problemy matematiki. Matematicheskii analiz, algebra, topologiya, Tr. MIAN SSSR, 167, 1985, 96–107 | MR | Zbl

[4] V. G. Danilov, P. N. Zhevandrov, “O metode Maslova postroeniya kombinirovannykh asimptotik dlya $h$-psevdodifferentsialnykh uravnenii”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 411–424 | MR | Zbl

[5] S. A. Sergeev, “Asimptoticheskie resheniya zadachi Koshi s lokalizovannymi nachalnymi dannymi dlya raznostnoi skhemy, otvechayuschei odnomernomu volnovomu uravneniyu”, Matem. zametki, 106:5 (2019), 744–760 | DOI | MR

[6] V. V. Grushin, S. A. Sergeev, “Asymptotic of the propagation problem for linear waves on a two-dimensional lattice and modified Maslov's canonical operator”, Russ. J. Math. Phys., 27:1 (2020), 31–47 | DOI | MR

[7] S. Yu. Dobrokhotov, V. E. Nazakinskii, “Propagation of a linear wave created by a spatially localized perturbation in a regular lattice and punctured Lagrangian manifold”, Russ. J. Math. Phys., 24:1 (2017), 127–133 | DOI | MR

[8] A. A. Samarskii, Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR

[9] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[10] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. matem., 81:2 (2017), 53–96 | DOI | MR

[11] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[12] S. Yu. Dobrokhotov, V. E. Nazakinskii, A. A. Tolchennikov, “Uniform formulas for the asymptotic solution of a linear pseudodifferential equation describing water waves generated by a localized source”, Russ. J. Math. Phys., 27:2 (2020), 185–191 | DOI | MR

[13] V. E. Nazaikinskii, V. E. Shatalov, B. Yu. Sternin, Methods of Noncommutative Analysis. Theory and Applications, De Gruyter Stud. Math., 22, Walter de Gruyter, Berlin, 1996 | MR

[14] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized waves and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR