Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 872-883.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an Abelian group $A$, viewed as a module over its endomorphism ring $E(A)$, the near-ring $\mathcal{M}_{E(A)}(A)$ of homogeneous mappings is defined as the set of mappings $\{f\colon A\to A \mid f(\varphi a)=\varphi f(a)$ for all $\varphi\in E(A)$ and $a\in A\}$ with the operations of addition and composition (as multiplication). It is proved that the problem of describing some classes of mixed Abelian groups with the property $\mathcal{M}_{E(A)}(A)=E(A)$ reduces to the cause of torsion-free Abelian groups. Abelian groups with this property are found in the class of strongly indecomposable torsion-free Abelian groups of finite rank and torsion-free Abelian groups of finite rank coinciding with their pseudosocle.
Keywords: Abelian group, endomorphic module.
@article{MZM_2021_109_6_a6,
     author = {O. V. Ljubimtsev},
     title = {Endomorphism of {Abelian} {Groups} as {Modules} over {Their} {Endomorphism} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {872--883},
     publisher = {mathdoc},
     volume = {109},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a6/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
TI  - Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings
JO  - Matematičeskie zametki
PY  - 2021
SP  - 872
EP  - 883
VL  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a6/
LA  - ru
ID  - MZM_2021_109_6_a6
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%T Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings
%J Matematičeskie zametki
%D 2021
%P 872-883
%V 109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a6/
%G ru
%F MZM_2021_109_6_a6
O. V. Ljubimtsev. Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 872-883. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a6/

[1] J. D. P. Meldnim, Near-Rings and Their Links with Groups, Res. Notes in Math., 134, Pitman, Boston, MA, 1985 | MR

[2] G. Pilz, Near-Rings, North-Holland Publ., Amsterdam, 1983 | MR

[3] C. J. Maxson, A. P. J. van der Walt, “Centralizer near-rings over free ring modules”, J. Austral. Math. Soc. Ser. A, 50:2 (1991), 279–296 | DOI | MR

[4] C. J. Maxson, K. C. Smith, “Simple near-ring centralizers of finite rings”, Proc. Amer. Math. Soc., 75:1 (1979), 8–12 | DOI | MR

[5] C. J. Maxson, “Homogeneous functions of modules over local rings. II”, Results Math., 525:1-2 (1994), 103–119 | DOI | MR

[6] P. Fuchs, C. J. Maxson, G. Pilz, “On rings for which homogeneous maps are linear”, Proc. Amer. Math. Soc., 112:1 (1991), 1–7 | DOI | MR

[7] J. Hausen, J. A. Johnson, “Centralizer near-rings that are rings”, J. Austral Math. Soc. Ser. A, 59:2 (1995), 173–183 | DOI | MR

[8] C. J. Maxson, K. C. Smith, “Centralizer near-rings that are endomorphism rings”, Proc. Amer. Math. Soc., 80:2 (1980), 189–195 | DOI | MR

[9] U. Albrecht, J. Hausen, “Nonsingular modules and $R$-homogeneous maps”, Proc. Amer. Math. Soc., 123:8 (1995), 2381–2389 | MR

[10] A. B. van der Merwe, “Modules for which Homogeneous Maps are Linear”, Rocky Mountain J. Math., 29:4 (1999), 1521–1530 | DOI | MR

[11] J. Hausen, “Abelian groups whose semi-endomorphisms form a ring”, Abelian Groups, Lecture Notes in Pure and Appl. Math., 146, Dekker, New York, 1991, 175–180 | MR

[12] D. S. Chistyakov, O. V. Lyubimtsev, “Abelevy gruppy kak endomorfnye moduli nad svoim koltsom endomorfizmov”, Fundament. i prikl. matem., 13:1 (2007), 229–233 | MR | Zbl

[13] D. S. Chistyakov, “Abelevy gruppy bez krucheniya konechnogo ranga kak endomorfnye moduli nad svoim koltsom endomorfizmov”, Matem. zametki, 94:5 (2013), 770–776 | DOI | MR | Zbl

[14] P A. Krylov, A. V. Mikhalev, A. A. Tuganbaev, Abelevy gruppy i ikh koltsa endomorfizmov, M., Faktorial press, 2006

[15] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 ; Л. Фукс, Бесконечные абелевы группы, Т. 2, Мир, М., 1977 | MR | Zbl | MR | Zbl

[16] A. Kreuzer, C. J. Maxson, “E-locally cyclic abelian groups and maximal near-rings of mappings”, Forum Math., 18 (2006), 107–114 | DOI | MR

[17] S. Glaz, W. Wickless, “Regular and principal projective endomorphisms rings”, Comm. Algebra, 2:4 (1994), 1161–1176 | DOI

[18] R. A. Beaumont, R. S. Pierce, “Torsion-free rings”, Illinois J. Math., 5 (1961), 61–98 | DOI | MR

[19] A. A. Fomin, W. Wickless, “Quotient divisible abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | DOI | MR

[20] A. A. Fomin, “K teorii faktorno delimykh grupp. I”, Fundament. i prikl. matem., 17:8 (2012), 153–167