Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 872-883

Voir la notice de l'article provenant de la source Math-Net.Ru

For an Abelian group $A$, viewed as a module over its endomorphism ring $E(A)$, the near-ring $\mathcal{M}_{E(A)}(A)$ of homogeneous mappings is defined as the set of mappings $\{f\colon A\to A \mid f(\varphi a)=\varphi f(a)$ for all $\varphi\in E(A)$ and $a\in A\}$ with the operations of addition and composition (as multiplication). It is proved that the problem of describing some classes of mixed Abelian groups with the property $\mathcal{M}_{E(A)}(A)=E(A)$ reduces to the cause of torsion-free Abelian groups. Abelian groups with this property are found in the class of strongly indecomposable torsion-free Abelian groups of finite rank and torsion-free Abelian groups of finite rank coinciding with their pseudosocle.
Keywords: Abelian group, endomorphic module.
@article{MZM_2021_109_6_a6,
     author = {O. V. Ljubimtsev},
     title = {Endomorphism of {Abelian} {Groups} as {Modules} over {Their} {Endomorphism} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {872--883},
     publisher = {mathdoc},
     volume = {109},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a6/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
TI  - Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings
JO  - Matematičeskie zametki
PY  - 2021
SP  - 872
EP  - 883
VL  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a6/
LA  - ru
ID  - MZM_2021_109_6_a6
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%T Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings
%J Matematičeskie zametki
%D 2021
%P 872-883
%V 109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a6/
%G ru
%F MZM_2021_109_6_a6
O. V. Ljubimtsev. Endomorphism of Abelian Groups as Modules over Their Endomorphism Rings. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 872-883. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a6/