Cox Rings of Trinomial Hypersurfaces
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 842-855.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the total coordinate space of a trinomial hypersurface to be a hypersurface is found. An algorithm for calculating the Cox ring in explicit form is proposed, and criteria for the total coordinate space to be rational and factorial are obtained.
Keywords: affine variety, Cox ring, polyhedral divisor, rational variety.
Mots-clés : torus action
@article{MZM_2021_109_6_a4,
     author = {O. K. Kruglov},
     title = {Cox {Rings} of {Trinomial} {Hypersurfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {842--855},
     publisher = {mathdoc},
     volume = {109},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a4/}
}
TY  - JOUR
AU  - O. K. Kruglov
TI  - Cox Rings of Trinomial Hypersurfaces
JO  - Matematičeskie zametki
PY  - 2021
SP  - 842
EP  - 855
VL  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a4/
LA  - ru
ID  - MZM_2021_109_6_a4
ER  - 
%0 Journal Article
%A O. K. Kruglov
%T Cox Rings of Trinomial Hypersurfaces
%J Matematičeskie zametki
%D 2021
%P 842-855
%V 109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a4/
%G ru
%F MZM_2021_109_6_a4
O. K. Kruglov. Cox Rings of Trinomial Hypersurfaces. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 842-855. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a4/

[1] I. Arzhantsev, “On rigidity of factorial trinomial hypersurfaces”, Internat. J. Algebra Comput., 26:5 (2016), 1061–1070 | DOI | MR

[2] I. Arzhantsev, “Polynomial curves on trinomial hypersurfaces”, Acta Arith., 186:1 (2018), 87–99 | DOI | MR

[3] I. Arzhantsev, L. Braun, J. Hausen, M. Wrobel, “Log terminal singularities, platonic tuples and iteration of Cox rings”, Eur. J. Math, 4:1 (2018), 242–312 | DOI | MR

[4] J. Hausen, M. Wrobel, “Non-complete rational $T$-varieties of complexity one”, Math. Nachr., 290:5–6 (2017), 815–826 | DOI | MR

[5] J. Hausen, M. Wrobel, “On iteration of Cox rings”, J. Pure Appl. Algebra, 222:9 (2018), 2737–2745 | DOI | MR

[6] M. Wrobel, “Divisor class groups of rational trinomial varieties”, J. Algebra, 542 (2020), 43–64 | DOI | MR

[7] D. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4 (1995), 17–50 | MR

[8] I. Arzhantsev, U. Derenthal, J. Hausen, A. Laface, Cox Rings, Cambridge Stud. Adv. Math., 144, Cambrige Univ. Press, Cambrige, 2014 | MR

[9] J. Hausen, H. Süß, “The Cox ring of an algebraic variety with torus action”, Adv. Math., 225:2 (2010), 977–1012 | DOI | MR

[10] K. Altmann, J. Hausen, “Polyhedral divisors and algebraic torus actions”, Math. Ann., 334:3 (2006), 557–607 | DOI | MR

[11] J. Hausen, E. Herppich, H. Süß, “Multigraded factorial rings and Fano varieties with torus action”, Doc. Math., 16 (2011), 71–109 | MR

[12] J. Hausen, E. Herppich, “Factorially graded rings of complexity one”, Torsors, Étale Homotopy and Applications to Rational Points, London Math. Soc. Lecture Note Ser., 405, Cambridge Univ. Press, Cambridge, 2013, 414–428 | MR

[13] O. Kruglov, “Poliedralnye divizory affinnykh trinomialnykh giperpoverkhnostei”, Sib. matem. zhurn., 60:4 (2019), 787–800 | DOI