Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_6_a4, author = {O. K. Kruglov}, title = {Cox {Rings} of {Trinomial} {Hypersurfaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {842--855}, publisher = {mathdoc}, volume = {109}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a4/} }
O. K. Kruglov. Cox Rings of Trinomial Hypersurfaces. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 842-855. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a4/
[1] I. Arzhantsev, “On rigidity of factorial trinomial hypersurfaces”, Internat. J. Algebra Comput., 26:5 (2016), 1061–1070 | DOI | MR
[2] I. Arzhantsev, “Polynomial curves on trinomial hypersurfaces”, Acta Arith., 186:1 (2018), 87–99 | DOI | MR
[3] I. Arzhantsev, L. Braun, J. Hausen, M. Wrobel, “Log terminal singularities, platonic tuples and iteration of Cox rings”, Eur. J. Math, 4:1 (2018), 242–312 | DOI | MR
[4] J. Hausen, M. Wrobel, “Non-complete rational $T$-varieties of complexity one”, Math. Nachr., 290:5–6 (2017), 815–826 | DOI | MR
[5] J. Hausen, M. Wrobel, “On iteration of Cox rings”, J. Pure Appl. Algebra, 222:9 (2018), 2737–2745 | DOI | MR
[6] M. Wrobel, “Divisor class groups of rational trinomial varieties”, J. Algebra, 542 (2020), 43–64 | DOI | MR
[7] D. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4 (1995), 17–50 | MR
[8] I. Arzhantsev, U. Derenthal, J. Hausen, A. Laface, Cox Rings, Cambridge Stud. Adv. Math., 144, Cambrige Univ. Press, Cambrige, 2014 | MR
[9] J. Hausen, H. Süß, “The Cox ring of an algebraic variety with torus action”, Adv. Math., 225:2 (2010), 977–1012 | DOI | MR
[10] K. Altmann, J. Hausen, “Polyhedral divisors and algebraic torus actions”, Math. Ann., 334:3 (2006), 557–607 | DOI | MR
[11] J. Hausen, E. Herppich, H. Süß, “Multigraded factorial rings and Fano varieties with torus action”, Doc. Math., 16 (2011), 71–109 | MR
[12] J. Hausen, E. Herppich, “Factorially graded rings of complexity one”, Torsors, Étale Homotopy and Applications to Rational Points, London Math. Soc. Lecture Note Ser., 405, Cambridge Univ. Press, Cambridge, 2013, 414–428 | MR
[13] O. Kruglov, “Poliedralnye divizory affinnykh trinomialnykh giperpoverkhnostei”, Sib. matem. zhurn., 60:4 (2019), 787–800 | DOI