Cox Rings of Trinomial Hypersurfaces
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 842-855

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the total coordinate space of a trinomial hypersurface to be a hypersurface is found. An algorithm for calculating the Cox ring in explicit form is proposed, and criteria for the total coordinate space to be rational and factorial are obtained.
Keywords: affine variety, Cox ring, polyhedral divisor, rational variety.
Mots-clés : torus action
@article{MZM_2021_109_6_a4,
     author = {O. K. Kruglov},
     title = {Cox {Rings} of {Trinomial} {Hypersurfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {842--855},
     publisher = {mathdoc},
     volume = {109},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a4/}
}
TY  - JOUR
AU  - O. K. Kruglov
TI  - Cox Rings of Trinomial Hypersurfaces
JO  - Matematičeskie zametki
PY  - 2021
SP  - 842
EP  - 855
VL  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a4/
LA  - ru
ID  - MZM_2021_109_6_a4
ER  - 
%0 Journal Article
%A O. K. Kruglov
%T Cox Rings of Trinomial Hypersurfaces
%J Matematičeskie zametki
%D 2021
%P 842-855
%V 109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a4/
%G ru
%F MZM_2021_109_6_a4
O. K. Kruglov. Cox Rings of Trinomial Hypersurfaces. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 842-855. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a4/