Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_6_a11, author = {K. V. Shakhmatov}, title = {Smooth {Nonprojective} {Equivariant} {Completions} of {Affine} {Space}}, journal = {Matemati\v{c}eskie zametki}, pages = {929--937}, publisher = {mathdoc}, volume = {109}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a11/} }
K. V. Shakhmatov. Smooth Nonprojective Equivariant Completions of Affine Space. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 929-937. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a11/
[1] B. Hassett, Y. Tschinkel, “Geometry of equivariant compactifications of $\mathbb G^n_a$”, Internat. Math. Res. Notices, 1999:22 (1999), 1211–1230 | DOI | MR
[2] I. Arzhantsev, E. Romaskevich, “Additive actions on toric varieties”, Proc. Amer. Math. Soc., 145:5 (2017), 1865–1879 | DOI | MR
[3] I. Arzhantsev, “Flag varieties as equivariant compactifications of $\mathbb G_a^n$”, Proc. Amer. Math. Soc., 139:3 (2011), 783–786 | DOI | MR
[4] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag, New York, 1977 | DOI | MR
[5] V. M. Buchstaber, T. E. Panov, Toric Topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR
[6] D. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50 | MR
[7] W. Fulton, Introduction to Toric Varieties, 131, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 1993 | MR
[8] D. A. Cox, J. B. Little, H. K. Schenck, Toric Varieties, 124, Grad. Stud. Math., Amer. Math. Soc., Providence, RI, 2011 | DOI | MR