Smooth Nonprojective Equivariant Completions of Affine Space
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 929-937.

Voir la notice de l'article provenant de la source Math-Net.Ru

An open translation-equivariant embedding of the affine space $\mathbb A^n$ into a complete nonprojective algebraic variety $X$ is constructed for any $n\ge 3$. The main tool is the theory of toric varieties. In the case $n=3$, the orbit structure of the obtained action on the variety $X$ is described.
Keywords: nonprojective variety, toric variety, additive action, completion.
@article{MZM_2021_109_6_a11,
     author = {K. V. Shakhmatov},
     title = {Smooth {Nonprojective} {Equivariant} {Completions} of {Affine} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {929--937},
     publisher = {mathdoc},
     volume = {109},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a11/}
}
TY  - JOUR
AU  - K. V. Shakhmatov
TI  - Smooth Nonprojective Equivariant Completions of Affine Space
JO  - Matematičeskie zametki
PY  - 2021
SP  - 929
EP  - 937
VL  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a11/
LA  - ru
ID  - MZM_2021_109_6_a11
ER  - 
%0 Journal Article
%A K. V. Shakhmatov
%T Smooth Nonprojective Equivariant Completions of Affine Space
%J Matematičeskie zametki
%D 2021
%P 929-937
%V 109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a11/
%G ru
%F MZM_2021_109_6_a11
K. V. Shakhmatov. Smooth Nonprojective Equivariant Completions of Affine Space. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 929-937. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a11/

[1] B. Hassett, Y. Tschinkel, “Geometry of equivariant compactifications of $\mathbb G^n_a$”, Internat. Math. Res. Notices, 1999:22 (1999), 1211–1230 | DOI | MR

[2] I. Arzhantsev, E. Romaskevich, “Additive actions on toric varieties”, Proc. Amer. Math. Soc., 145:5 (2017), 1865–1879 | DOI | MR

[3] I. Arzhantsev, “Flag varieties as equivariant compactifications of $\mathbb G_a^n$”, Proc. Amer. Math. Soc., 139:3 (2011), 783–786 | DOI | MR

[4] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag, New York, 1977 | DOI | MR

[5] V. M. Buchstaber, T. E. Panov, Toric Topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR

[6] D. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50 | MR

[7] W. Fulton, Introduction to Toric Varieties, 131, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 1993 | MR

[8] D. A. Cox, J. B. Little, H. K. Schenck, Toric Varieties, 124, Grad. Stud. Math., Amer. Math. Soc., Providence, RI, 2011 | DOI | MR