On Classes of Subcompact Spaces
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 810-820
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper continues the study of P. S. Alexandroff's problem: When can a Hausdorff space $X$ be one-to-one continuously mapped onto a compact Hausdorff space? For a cardinal number $\tau$, the classes of $a_\tau$-spaces and strict $a_\tau$-spaces are defined. A compact space $X$ is called an $a_\tau$-space if, for any $C\in[X]^{\le\tau}$, there exists a one-to-one continuous mapping of $X\setminus C$ onto a compact space. A compact space $X$ is called a strict $a_\tau$-space if, for any $C\in[X]^{\le\tau}$, there exits a one-to-one continuous mapping of $X\setminus C$ onto a compact space $Y$, and this mapping can be continuously extended to the whole space $X$. In this paper, we study properties of the classes of $a_\tau$- and strict $a_\tau$-spaces by using Raukhvarger's method of special continuous paritions.
Mots-clés :
condensation, $a_\tau$-space, dyadic compact space.
Keywords: strict $a_\tau$-space, subcompact space, continuous partition, upper semicontinuous partition, ordered compact space
Keywords: strict $a_\tau$-space, subcompact space, continuous partition, upper semicontinuous partition, ordered compact space
@article{MZM_2021_109_6_a1,
author = {V. I. Belugin and A. V. Osipov and E. G. Pytkeev},
title = {On {Classes} of {Subcompact} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {810--820},
publisher = {mathdoc},
volume = {109},
number = {6},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a1/}
}
V. I. Belugin; A. V. Osipov; E. G. Pytkeev. On Classes of Subcompact Spaces. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 810-820. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a1/