On Classes of Subcompact Spaces
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 810-820

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues the study of P. S. Alexandroff's problem: When can a Hausdorff space $X$ be one-to-one continuously mapped onto a compact Hausdorff space? For a cardinal number $\tau$, the classes of $a_\tau$-spaces and strict $a_\tau$-spaces are defined. A compact space $X$ is called an $a_\tau$-space if, for any $C\in[X]^{\le\tau}$, there exists a one-to-one continuous mapping of $X\setminus C$ onto a compact space. A compact space $X$ is called a strict $a_\tau$-space if, for any $C\in[X]^{\le\tau}$, there exits a one-to-one continuous mapping of $X\setminus C$ onto a compact space $Y$, and this mapping can be continuously extended to the whole space $X$. In this paper, we study properties of the classes of $a_\tau$- and strict $a_\tau$-spaces by using Raukhvarger's method of special continuous paritions.
Mots-clés : condensation, $a_\tau$-space, dyadic compact space.
Keywords: strict $a_\tau$-space, subcompact space, continuous partition, upper semicontinuous partition, ordered compact space
@article{MZM_2021_109_6_a1,
     author = {V. I. Belugin and A. V. Osipov and E. G. Pytkeev},
     title = {On {Classes} of {Subcompact} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {810--820},
     publisher = {mathdoc},
     volume = {109},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a1/}
}
TY  - JOUR
AU  - V. I. Belugin
AU  - A. V. Osipov
AU  - E. G. Pytkeev
TI  - On Classes of Subcompact Spaces
JO  - Matematičeskie zametki
PY  - 2021
SP  - 810
EP  - 820
VL  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a1/
LA  - ru
ID  - MZM_2021_109_6_a1
ER  - 
%0 Journal Article
%A V. I. Belugin
%A A. V. Osipov
%A E. G. Pytkeev
%T On Classes of Subcompact Spaces
%J Matematičeskie zametki
%D 2021
%P 810-820
%V 109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a1/
%G ru
%F MZM_2021_109_6_a1
V. I. Belugin; A. V. Osipov; E. G. Pytkeev. On Classes of Subcompact Spaces. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 810-820. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a1/