Properties of Neighborhoods of Attractors of Dynamical Systems
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 734-746.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the study of dynamical systems admitting compact attractors, which describe the behavior of trajectories of the system at infinity and play an important role in the qualitative theory of stability of motion. The properties of trajectories of a dynamical system in the attraction domain of the attractors and on the boundary are established by using concepts such as elliptic and weakly elliptic sets, as well as the pseudo-stability and pseudo-prolongation properties.
Keywords: dynamical system, compact set, attraction, attractor.
@article{MZM_2021_109_5_a6,
     author = {B. S. Kalitine},
     title = {Properties of {Neighborhoods} of {Attractors} of {Dynamical} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {734--746},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a6/}
}
TY  - JOUR
AU  - B. S. Kalitine
TI  - Properties of Neighborhoods of Attractors of Dynamical Systems
JO  - Matematičeskie zametki
PY  - 2021
SP  - 734
EP  - 746
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a6/
LA  - ru
ID  - MZM_2021_109_5_a6
ER  - 
%0 Journal Article
%A B. S. Kalitine
%T Properties of Neighborhoods of Attractors of Dynamical Systems
%J Matematičeskie zametki
%D 2021
%P 734-746
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a6/
%G ru
%F MZM_2021_109_5_a6
B. S. Kalitine. Properties of Neighborhoods of Attractors of Dynamical Systems. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 734-746. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a6/

[1] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950 | MR

[2] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M.–L., 1947

[3] A. A. Markov, “Stabilität im Liapunoffschen Sinne und Fastperiodizität”, Math. Z., 36 (1933), 708–738 | DOI | MR | Zbl

[4] H. Witney, “Regular families of curves”, Ann. of Math. (2), 34:2 (1933), 244–270 | DOI | MR

[5] Dzh. Birkgof, Dinamicheskie sistemy, GITTL, M.–L., 1941

[6] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M.–L., 1949 | MR

[7] E. A. Barbashin, Metod sechenii v teorii dinamicheskikh sistem, Nauka i tekhnika, Minsk, 1979 | MR

[8] V. I. Zubov, Ustoichivost dvizheniya (metody Lyapunova i ikh primenenie), Vysshaya shkola, M., 1984

[9] N. P. Erugin, “O nekotorykh voprosakh ustoichivosti dvizheniya i kachestvennoi teorii differentsialnykh uravnenii v tselom”, Prikl. matem. i mekh., 14:5 (1950), 459–512 | MR | Zbl

[10] N. P. Erugin, “Nekotorye obschie voprosy teorii ustoichivosti dvizheniya”, Prikl. matem. i mekh., 15:2 (1951), 227–236 | MR | Zbl

[11] N. P. Erugin, “Kachestvennye metody v teorii ustoichivosti”, Prikl. matem. i mekh., 19:5 (1955), 599–616 | MR | Zbl

[12] K. S. Sibirskii, Vvedenie v topologicheskuyu dinamiku, RIO AN MSSR, Kishinev, 1970 | MR

[13] N. N. Ladis, “Otsutstvie dvustoronnikh tochek prityazheniya”, Differents. uravneniya, 4:6 (1968), 1157 | MR | Zbl

[14] L. A. Chelysheva, “Topologicheskaya klassifikatsiya zamknutykh invariantnykh mnozhestv”, Matem. issledovaniya, 3 (1), RIO AN MSSR, Kishinev, 1968, 184–187

[15] M. S. Izman, “Ustoichivost i mnozhestva prityazheniya v dispersnykh dinamicheskikh sistemakh”, Matem. issledovaniya, 3 (3), RIO AN MSSR, Kishinev, 1968, 60–78

[16] A. A. Shestakov, Obobschennyi pryamoi metod Lyapunova dlya sistem s raspredelennymi parametrami, Nauka, M., 1990 | MR

[17] D. Cheban, Nonautonomous Dynamics. Nonlinear Oscillations and Global Attractors, Springer, 2020 | DOI | Zbl

[18] B. Kalitine, “Sur la stabilité des ensembles compacts positivement invariants des systémes dynamiques”, RAIRO Automat., 16:3 (1982), 275–286 | MR | Zbl

[19] B. S. Kalitin, “Otnositelnaya ustoichivost kompaktnykh mnozhestv”, Vestn. Belorusskogo un-ta. Ser. 1. Fiz., matem., mekh., 1987, no. 1, 34–36 | MR | Zbl

[20] B. S. Kalitin, “Kharakteristika kompaktnykh slabo prityagivayuschikh polozhitelno invariantnykh mnozhestv”, Differents. uravneniya, 24:6 (1988), 1085

[21] B. S. Kalitin, “O strukture okrestnosti slabo prityagivayuschikh kompaktnykh mnozhestv”, Differents. uravneniya, 30:4 (1994), 565–574 | MR | Zbl

[22] B. S. Kalitin, “Kachestvennaya kharakteristika traektorii v okrestnosti prityagivayuschego kompaktnogo mnozhestva”, Differents. uravneniya, 34:7 (1998), 886–893 | MR | Zbl

[23] B. S. Kalitin, “Razvitie metoda znakopostoyannykh funktsii Lyapunova”, Vybranyya navukovyya pratsy Belaruskaga Dzyarzhaunaga universiteta. T. 6: Matematyka, BDU, Minsk, 2001, 232–257

[24] B. S. Kalitin, Kachestvennaya teoriya ustoichivosti dvizheniya dinamicheskikh sistem, BGU, Minsk, 2002

[25] B. S. Kalitin, “Ustoichivost po Lyapunovu i orbitalnaya ustoichivost dinamicheskikh sistem”, Differents. uravneniya, 40:8 (2004), 1033–1042 | MR | Zbl

[26] B. S. Kalitin, “O strukture okrestnosti ustoichivykh kompaktnykh invariantnykh mnozhestv”, Differents. uravneniya, 41:8 (2005), 1062–1073 | MR | Zbl

[27] B. S. Kalitin, “Neustoichivost zamknutykh invariantnykh mnozhestv poludinamicheskikh sistem. Metod znakopostoyannykh funktsii Lyapunova”, Matem. zametki, 85:3 (2009), 382–394 | DOI | MR | Zbl

[28] B. S. Kalitin, Ustoichivost dinamicheskikh sistem (Kachestvennaya teoriya), LAP LAMBERT Acad. Publ., Saarbrücken, 2012

[29] B. S. Kalitin, Ustoichivost differentsialnykh uravnenii (Metod znakopostoyannykh funktsii Lyapunova), LAP LAMBERT Acad. Publ., Saarbrücken, 2012

[30] A. F. Filippov, “Klassifikatsiya kompaktnykh invariantnykh mnozhestv dinamicheskikh sistem”, Izv. RAN. Ser. matem., 57:6 (1993), 130–140 | MR | Zbl

[31] A. A. Levakov, “Ispolzovanie znakopostoyannykh funktsii Lyapunova dlya issledovaniya ustoichivosti differentsialnykh vklyuchenii”, Differents. uravneniya, 24:12 (1988), 2083–2090 | MR | Zbl

[32] A. A. Levakov, “Ustoichivost funktsionalno-differentsialnykh vklyuchenii”, Differents. uravneniya, 25:8 (1989), 1312–1321 | MR | Zbl

[33] B. P. Mendelson, “On unstable attractors”, Bol. Soc. Mat. Mexicana (2), 5 (1960), 270–276 | MR | Zbl

[34] J. Auslander, N. P. Bhatia, P. Seibert, “Attractors in dynamical systems”, Bol. Soc. Mat. Mexicana (2), 9 (1964), 55–66 | MR | Zbl

[35] P. Seibert, “Relative stability and stability of closed sets”, Seminar on Differential Equations and Dynamical systems. II, Lecture Notes in Math., 144, Springer, Berlin, 1970, 185–189 | DOI | MR

[36] N. P. Bhatia, G. Szegö, Stability Theory of Dynamical Systems, Springer, Berlin, 1970 | MR | Zbl

[37] T. Ura, “Sur les courbes définies par les équations différentielles dans l'espace à $m$ dimensions”, Ann. Sci. Ecole Norm. Sup. (3), 70 (1953), 287–360 | MR | Zbl

[38] J. H. Arredondo, P. Seibert, “On a characterization of asymptotic stability”, XXXIII National Congress of the Mexican Mathematical Society, Aportaciones Mat. Comun., 29, Soc. Mat. Mexicana, México, 2001, 11–16 | MR | Zbl

[39] O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[40] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl

[41] A. A. Andronov, A. A. Vitt, S. E. Khaikin, Teoriya kolebanii, FIZMATLIT, M., 1959 | MR