Properties of Neighborhoods of Attractors of Dynamical Systems
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 734-746

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the study of dynamical systems admitting compact attractors, which describe the behavior of trajectories of the system at infinity and play an important role in the qualitative theory of stability of motion. The properties of trajectories of a dynamical system in the attraction domain of the attractors and on the boundary are established by using concepts such as elliptic and weakly elliptic sets, as well as the pseudo-stability and pseudo-prolongation properties.
Keywords: dynamical system, compact set, attraction, attractor.
@article{MZM_2021_109_5_a6,
     author = {B. S. Kalitine},
     title = {Properties of {Neighborhoods} of {Attractors} of {Dynamical} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {734--746},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a6/}
}
TY  - JOUR
AU  - B. S. Kalitine
TI  - Properties of Neighborhoods of Attractors of Dynamical Systems
JO  - Matematičeskie zametki
PY  - 2021
SP  - 734
EP  - 746
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a6/
LA  - ru
ID  - MZM_2021_109_5_a6
ER  - 
%0 Journal Article
%A B. S. Kalitine
%T Properties of Neighborhoods of Attractors of Dynamical Systems
%J Matematičeskie zametki
%D 2021
%P 734-746
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a6/
%G ru
%F MZM_2021_109_5_a6
B. S. Kalitine. Properties of Neighborhoods of Attractors of Dynamical Systems. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 734-746. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a6/