On Changes of Variable that Preserve the Absolute Convergence of Fourier--Haar Series of Continuous Functions
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 664-680.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that, among all the differentiable homeomorphic changes of variable, only the functions $\varphi_1 (x)=x$ and $\varphi_2 (x)=1-x$, $x\in[0,1]$, preserve the absolute convergence of Fourier–Haar series everywhere. It is established that the class of all differentiable homeomorphic changes of variable that preserve absolute convergence everywhere will not become wider if we restrict ourselves to continuous external functions.
Keywords: Fourier–Haar series, changes of variable.
@article{MZM_2021_109_5_a1,
     author = {K. Bitsadze},
     title = {On {Changes} of {Variable} that {Preserve} the {Absolute} {Convergence} of {Fourier--Haar} {Series} of {Continuous} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {664--680},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a1/}
}
TY  - JOUR
AU  - K. Bitsadze
TI  - On Changes of Variable that Preserve the Absolute Convergence of Fourier--Haar Series of Continuous Functions
JO  - Matematičeskie zametki
PY  - 2021
SP  - 664
EP  - 680
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a1/
LA  - ru
ID  - MZM_2021_109_5_a1
ER  - 
%0 Journal Article
%A K. Bitsadze
%T On Changes of Variable that Preserve the Absolute Convergence of Fourier--Haar Series of Continuous Functions
%J Matematičeskie zametki
%D 2021
%P 664-680
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a1/
%G ru
%F MZM_2021_109_5_a1
K. Bitsadze. On Changes of Variable that Preserve the Absolute Convergence of Fourier--Haar Series of Continuous Functions. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 664-680. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a1/

[1] G. Alexits, Konvergenzprobleme der Orthogonalreihen, Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 1960 | MR | Zbl

[2] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[3] P. L. Ulyanov, “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 72 (114):2 (1967), 193–225 | MR | Zbl

[4] P. L. Ulyanov, “Absolyutnaya skhodimost ryadov Fure–Khaara ot superpozitsii funktsii”, Anal. Math., 4:3 (1978), 225–236 | DOI | Zbl

[5] A. M. Olevskii, “Modifikatsiya funktsii i ryady Fure”, UMN, 40:3 (243) (1985), 157–193 | MR | Zbl

[6] V. M. Bugadze, “O ryadakh Fure–Khaara superpozitsii funktsii”, Matem. sb., 182:2 (1991), 175–202 | MR | Zbl

[7] K. R. Bitsadze, “O zamenakh peremennoi, sokhranyayuschikh skhodimost i absolyutnuyu skhodimost ryadov Fure–Khaara”, Matem. sb., 210:6 (2019), 30–55 | DOI | Zbl

[8] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63 (105):3 (1964), 356–391 | MR | Zbl