Randol Maximal Functions and the Integrability of the Fourier Transform of Measures
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 643-663

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of the Fourier transform of charges (measures) concentrated on smooth hypersurfaces are considered. Following M. Sugumoto, three classes of smooth hypersurfaces are defined. Depending on the class, estimates of the Fourier transform of charges are obtained in terms of Randol maximal functions. The obtained estimates are applied to the solution of the integrability problem for the Fourier transform of measures concentrated on some nonconvex hypersurfaces. The sharpness of the obtained estimates is shown.
Keywords: measure, curvature, integrability.
Mots-clés : Fourier transform, hypersurface
@article{MZM_2021_109_5_a0,
     author = {D. I. Akramova and I. A. Ikromov},
     title = {Randol {Maximal} {Functions} and the {Integrability} of the {Fourier} {Transform} of {Measures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--663},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a0/}
}
TY  - JOUR
AU  - D. I. Akramova
AU  - I. A. Ikromov
TI  - Randol Maximal Functions and the Integrability of the Fourier Transform of Measures
JO  - Matematičeskie zametki
PY  - 2021
SP  - 643
EP  - 663
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a0/
LA  - ru
ID  - MZM_2021_109_5_a0
ER  - 
%0 Journal Article
%A D. I. Akramova
%A I. A. Ikromov
%T Randol Maximal Functions and the Integrability of the Fourier Transform of Measures
%J Matematičeskie zametki
%D 2021
%P 643-663
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a0/
%G ru
%F MZM_2021_109_5_a0
D. I. Akramova; I. A. Ikromov. Randol Maximal Functions and the Integrability of the Fourier Transform of Measures. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 643-663. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a0/