Conditions for Acts over Semilattices to be Cantor
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 581-589.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebra $A$ is said to be Cantor if a theorem similar to the Cantor–Bernstein–Schröder theorem holds for it; namely, if, for any algebra $B$, the existence of injective homomorphisms $A\to B$ and $B\to A$ implies the isomorphism $A\cong B$. Necessary and sufficient conditions for an act over a finite commutative semigroup of idempotents to be Cantor are obtained under the assumption that all connected components of this act are finite.
Keywords: act over a semigroup, semilattice, Cantor–Bernstein–Schröder theorem.
@article{MZM_2021_109_4_a8,
     author = {I. B. Kozhukhov and A. S. Sotov},
     title = {Conditions for {Acts} over {Semilattices} to be {Cantor}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {581--589},
     publisher = {mathdoc},
     volume = {109},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a8/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
AU  - A. S. Sotov
TI  - Conditions for Acts over Semilattices to be Cantor
JO  - Matematičeskie zametki
PY  - 2021
SP  - 581
EP  - 589
VL  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a8/
LA  - ru
ID  - MZM_2021_109_4_a8
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%A A. S. Sotov
%T Conditions for Acts over Semilattices to be Cantor
%J Matematičeskie zametki
%D 2021
%P 581-589
%V 109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a8/
%G ru
%F MZM_2021_109_4_a8
I. B. Kozhukhov; A. S. Sotov. Conditions for Acts over Semilattices to be Cantor. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 581-589. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a8/

[1] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, Nauka, M., 1987 | MR

[2] A. S. Sotov, “Teorema Kantora–Bernshteina dlya poligonov nad gruppami”, Materialy VI Mezhdunarodnoi konferentsii «Sovremennye informatsionnye tekhnologii v obrazovanii i nauchnykh issledovaniyakh» (SITONI-2019), Izd-vo DonNTU, Donetsk, 2019, 120–123

[3] A. Klifford, G. Preston, Algebraicheskaya teoriya polugrupp, T. 1, Mir, M., 1972 | MR

[4] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[5] P. Kon, Universalnaya algebra, Mir, M., 1968 | MR

[6] B. I. Plotkin, L. Ya. Gringlaz, A. A. Gvaramiya, Elementy algebraicheskoi teorii avtomatov, Vysshaya shkola, M., 1994

[7] D. Jakubiková-Studenovská, J. Pócs, Monounary Algebras, Pavol Jozef Šafárik Univ., Košice, 2009 | Zbl