On the Kegel--Wielandt $\sigma$-Problem
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 564-570.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary partition $\sigma$ of the set $\mathbb{P}$ of all primes, a sufficient condition for the $\sigma$-subnormality of a subgroup in a finite group is given. It is proved that, if a complete Hall set of type $\sigma$ is reduced into a subgroup $H$ of a $\sigma$-complete finite group $G$ all of whose non-Abelian composition factors are alternating groups, Suzuki groups, or Ree groups, then $H$ is $\sigma$-subnormal in $G$.
Keywords: finite group, $\sigma$-subnormal subgroup, Hall subgroup, complete Hall set, Ree group.
@article{MZM_2021_109_4_a6,
     author = {S. F. Kamornikov and V. N. Tyutyanov},
     title = {On the {Kegel--Wielandt} $\sigma${-Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {564--570},
     publisher = {mathdoc},
     volume = {109},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a6/}
}
TY  - JOUR
AU  - S. F. Kamornikov
AU  - V. N. Tyutyanov
TI  - On the Kegel--Wielandt $\sigma$-Problem
JO  - Matematičeskie zametki
PY  - 2021
SP  - 564
EP  - 570
VL  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a6/
LA  - ru
ID  - MZM_2021_109_4_a6
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%A V. N. Tyutyanov
%T On the Kegel--Wielandt $\sigma$-Problem
%J Matematičeskie zametki
%D 2021
%P 564-570
%V 109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a6/
%G ru
%F MZM_2021_109_4_a6
S. F. Kamornikov; V. N. Tyutyanov. On the Kegel--Wielandt $\sigma$-Problem. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 564-570. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a6/

[1] O. H. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[2] H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute”, The Santa Cruz Conference on Finite Groups, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 161–173 | DOI | MR

[3] P. B. Kleidman, “A proof of the Kegel–Wielandt conjecture on subnormal subgroups”, Ann. of Math. (2), 133:2 (1991), 369–428 | DOI | MR | Zbl

[4] R. Guralnick, P. B. Kleidman, R. Lyons, “Sylow $p$-subgroups and subnormal subgroups of finite groups”, Proc. London Math. Soc. (3), 66:1 (1993), 129–151 | DOI | MR | Zbl

[5] L. M. Ezquerro, M. Gomez, “Finite groups in which all $p$-subnormal subgroups form a lattice”, Arch. Math. (Basel), 68 (1997), 1–6 | DOI | MR | Zbl

[6] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belorusskaya nauka, Mn., 2003

[7] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[8] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 19-e izd., Institut matematiki SO RAN, Novosibirsk, 2018

[9] A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2015), 281–309 | DOI | MR

[10] S. F. Kamornikov, V. N. Tyutyanov, “O $\sigma$-subnormalnykh podgruppakh konechnykh grupp”, Sib. matem. zhurn., 61:2 (2020), 337–343 | DOI | Zbl

[11] S. F. Kamornikov, V. N. Tyutyanov, “O $\sigma$-subnormalnykh podgruppakh konechnykh $3'$-grupp”, Ukr. matem. zhurn., 72:6 (2020), 806–811 | Zbl

[12] K. Doerk, T. Hawkes, Finite Soluble Groups, De Gruyter Exp. Math., 4, Walter de Gruyter, Berlin, 1992 | MR

[13] V. M. Levchuk, Ya. N. Nuzhin, “O stroenii grupp Ri”, Algebra i logika, 24:1 (1985), 26–41 | MR | Zbl

[14] P. B. Kleidman, “The maximal subgroups of the Chevalley groups $G_2(q)$ with $q$ odd, the Ree groups ${}^2G_2(q)$, and their automorphism groups”, J. Algebra, 117 (1988), 30–71 | DOI | MR | Zbl

[15] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR | Zbl