Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 544-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary-value problem with nonlocal integral condition of Samarskii–Ionkin type is studied for a mixed-type equation with singular coefficients in a rectangular domain. A uniqueness criterion for the problem is established by the method of spectral analysis.
Keywords: mixed-type equation, nonlocal integral condition.
Mots-clés : singular coefficient
@article{MZM_2021_109_4_a4,
     author = {N. V. Zaitseva},
     title = {Uniqueness of the {Solution} of a {Nonlocal} {Problem} for an {Elliptic-Hyperbolic} {Equation} with {Singular} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {544--551},
     publisher = {mathdoc},
     volume = {109},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/}
}
TY  - JOUR
AU  - N. V. Zaitseva
TI  - Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients
JO  - Matematičeskie zametki
PY  - 2021
SP  - 544
EP  - 551
VL  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/
LA  - ru
ID  - MZM_2021_109_4_a4
ER  - 
%0 Journal Article
%A N. V. Zaitseva
%T Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients
%J Matematičeskie zametki
%D 2021
%P 544-551
%V 109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/
%G ru
%F MZM_2021_109_4_a4
N. V. Zaitseva. Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 544-551. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/

[1] M. V. Keldysh, “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR, 77:2 (1951), 181–183 | MR

[2] A. Weinstein, “Generalized axially symmetric potential theory”, Bull. Amer. Math. Soc., 59 (1953), 20–38 | DOI | MR | Zbl

[3] I. A. Kipriyanov, Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR

[4] A. B. Muravnik, “Funktsionalno-differentsialnye parabolicheskie uravneniya: integralnye predstavleniya i kachestvennye svoistva reshenii zadachi Koshi”, Uravneniya v chastnykh proizvodnykh, SMFN, 52, RUDN, M., 2014, 3–141

[5] V. V. Katrakhov, S. M. Sitnik, “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Singulyarnye differentsialnye uravneniya, SMFN, 64, no. 2, RUDN, M., 2018, 211–426 | DOI

[6] E. L. Shishkina, “Obschee uravnenie Eilera—Puassona—Darbu i giperbolicheskie $B$-potentsialy”, Uravneniya v chastnykh proizvodnykh, SMFN, 65, no. 2, RUDN, M., 2019, 157–338 | DOI

[7] L. I. Kamynin, “Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1006–1024 | MR | Zbl

[8] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[9] A. A. Shkalikov, “O bazisnosti sobstvennykh funktsii obyknovennykh differentsialnykh operatorov s integralnymi kraevymi usloviyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 6, 12–21 | MR | Zbl

[10] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. I”, SMFN, 26, RUDN, M., 2007, 3–132 | MR | Zbl

[11] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. II”, Uravneniya v chastnykh proizvodnykh, SMFN, 33, RUDN, M., 2009, 3–179 | MR

[12] I. S. Lomov, “Ravnomernaya skhodimost razlozhenii po kornevym funktsiyam differentsialnogo operatora s integralnymi kraevymi usloviyami”, Differents. uravneniya, 55:4 (2019), 486–497 | MR | Zbl

[13] N. V. Zaitseva, “Boundary value problem with integral condition for the mixed type equation with a singular coefficient”, Transmutation Operators and Applications, Trends in Math., Birkhäuser, Cham, 2020, 671–686 | DOI | Zbl

[14] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[15] G. N. Vatson, Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949 | MR | Zbl