Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 544-551

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary-value problem with nonlocal integral condition of Samarskii–Ionkin type is studied for a mixed-type equation with singular coefficients in a rectangular domain. A uniqueness criterion for the problem is established by the method of spectral analysis.
Keywords: mixed-type equation, nonlocal integral condition.
Mots-clés : singular coefficient
@article{MZM_2021_109_4_a4,
     author = {N. V. Zaitseva},
     title = {Uniqueness of the {Solution} of a {Nonlocal} {Problem} for an {Elliptic-Hyperbolic} {Equation} with {Singular} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {544--551},
     publisher = {mathdoc},
     volume = {109},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/}
}
TY  - JOUR
AU  - N. V. Zaitseva
TI  - Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients
JO  - Matematičeskie zametki
PY  - 2021
SP  - 544
EP  - 551
VL  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/
LA  - ru
ID  - MZM_2021_109_4_a4
ER  - 
%0 Journal Article
%A N. V. Zaitseva
%T Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients
%J Matematičeskie zametki
%D 2021
%P 544-551
%V 109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/
%G ru
%F MZM_2021_109_4_a4
N. V. Zaitseva. Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 544-551. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/