Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_4_a4, author = {N. V. Zaitseva}, title = {Uniqueness of the {Solution} of a {Nonlocal} {Problem} for an {Elliptic-Hyperbolic} {Equation} with {Singular} {Coefficients}}, journal = {Matemati\v{c}eskie zametki}, pages = {544--551}, publisher = {mathdoc}, volume = {109}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/} }
TY - JOUR AU - N. V. Zaitseva TI - Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients JO - Matematičeskie zametki PY - 2021 SP - 544 EP - 551 VL - 109 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/ LA - ru ID - MZM_2021_109_4_a4 ER -
%0 Journal Article %A N. V. Zaitseva %T Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients %J Matematičeskie zametki %D 2021 %P 544-551 %V 109 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/ %G ru %F MZM_2021_109_4_a4
N. V. Zaitseva. Uniqueness of the Solution of a Nonlocal Problem for an Elliptic-Hyperbolic Equation with Singular Coefficients. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 544-551. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a4/
[1] M. V. Keldysh, “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR, 77:2 (1951), 181–183 | MR
[2] A. Weinstein, “Generalized axially symmetric potential theory”, Bull. Amer. Math. Soc., 59 (1953), 20–38 | DOI | MR | Zbl
[3] I. A. Kipriyanov, Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR
[4] A. B. Muravnik, “Funktsionalno-differentsialnye parabolicheskie uravneniya: integralnye predstavleniya i kachestvennye svoistva reshenii zadachi Koshi”, Uravneniya v chastnykh proizvodnykh, SMFN, 52, RUDN, M., 2014, 3–141
[5] V. V. Katrakhov, S. M. Sitnik, “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Singulyarnye differentsialnye uravneniya, SMFN, 64, no. 2, RUDN, M., 2018, 211–426 | DOI
[6] E. L. Shishkina, “Obschee uravnenie Eilera—Puassona—Darbu i giperbolicheskie $B$-potentsialy”, Uravneniya v chastnykh proizvodnykh, SMFN, 65, no. 2, RUDN, M., 2019, 157–338 | DOI
[7] L. I. Kamynin, “Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1006–1024 | MR | Zbl
[8] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl
[9] A. A. Shkalikov, “O bazisnosti sobstvennykh funktsii obyknovennykh differentsialnykh operatorov s integralnymi kraevymi usloviyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 6, 12–21 | MR | Zbl
[10] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. I”, SMFN, 26, RUDN, M., 2007, 3–132 | MR | Zbl
[11] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. II”, Uravneniya v chastnykh proizvodnykh, SMFN, 33, RUDN, M., 2009, 3–179 | MR
[12] I. S. Lomov, “Ravnomernaya skhodimost razlozhenii po kornevym funktsiyam differentsialnogo operatora s integralnymi kraevymi usloviyami”, Differents. uravneniya, 55:4 (2019), 486–497 | MR | Zbl
[13] N. V. Zaitseva, “Boundary value problem with integral condition for the mixed type equation with a singular coefficient”, Transmutation Operators and Applications, Trends in Math., Birkhäuser, Cham, 2020, 671–686 | DOI | Zbl
[14] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl
[15] G. N. Vatson, Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949 | MR | Zbl