On Differences of Multiplicative Functions and Solutions of the Equation $n-\varphi(n)=c$
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 608-615
Cet article a éte moissonné depuis la source Math-Net.Ru
The following general problem is studied: Given a positive integer $c$ and two multiplicative functions $f$ and $g$, it is required to determine for what values of $n$ the equality $f(n)-g(n)=c$ holds. It is proved that, under certain constraints on the functions $f$ and $g$ and the solutions (in particular, under the constraint $f(n)>g(n)$ for $n>1$), this equation has at most $c^{1-\epsilon}$ solutions. For the equation $n-\varphi(n)=c$, it is proved that the number of solutions equals $$ G(c+1)+O(c^{3/4+o(1)}), $$ where $G(k)$ is the number of ways in which $k$ can be represented as a sum of two primes. This result is based on an assertion concerning configurations of points and straight lines.
Keywords:
multiplicative functions
Mots-clés : Euler totient function.
Mots-clés : Euler totient function.
@article{MZM_2021_109_4_a11,
author = {A. S. Semchankau},
title = {On {Differences} of {Multiplicative} {Functions} and {Solutions} of the {Equation} $n-\varphi(n)=c$},
journal = {Matemati\v{c}eskie zametki},
pages = {608--615},
year = {2021},
volume = {109},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a11/}
}
A. S. Semchankau. On Differences of Multiplicative Functions and Solutions of the Equation $n-\varphi(n)=c$. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 608-615. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a11/
[1] P. Erdős, “On the normal number of prime factors of $p-1$ and some other related problems, concerning Euler's $\phi$-function”, Quart. J. Math. (Oxford Ser.), 6 (1935), 205–213 | DOI
[2] C. Pomerance, “Popular values of Euler's function”, Mathematika, 27:1, 84–89 | DOI | MR | Zbl
[3] W. D. Banks, F. Luca, Noncototients and Nonaliquots, 2004, arXiv: math/0409231
[4] E. Szemerédi, W. T. Trotter Jr., “Extremal problems in discrete geometry”, Combinatorica, 3:3-4 (1983), 381–392 | DOI | MR | Zbl