Keywords: mapping with bounded and finite distortion, local and boundary behavior of a mapping.
@article{MZM_2021_109_4_a10,
author = {E. A. Sevost'yanov and S. Sergei},
title = {Equicontinuity of {Families} of {Mappings} with {One} {Normalization} {Condition}},
journal = {Matemati\v{c}eskie zametki},
pages = {597--607},
year = {2021},
volume = {109},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a10/}
}
E. A. Sevost'yanov; S. Sergei. Equicontinuity of Families of Mappings with One Normalization Condition. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 597-607. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a10/
[1] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York, 2009 | MR | Zbl
[2] V. Gutlyanskii, V. Ryazanov, E. Yakubov, “The Beltrami equations and prime ends”, J. Math. Sci. (N.Y.), 210:1 (2015), 22–51 | MR | Zbl
[3] E. A. Sevostyanov, S. A. Skvortsov, “O ravnostepennoi nepreryvnosti semeistv otobrazhenii v sluchae peremennykh oblastei”, Ukr. matem. zhurn., 71:7 (2019), 938–951 | MR | Zbl
[4] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971 | DOI | Zbl
[5] R. Näkki, B. Palka, “Uniform equicontinuity of quasiconformal mappings”, Proc. Amer. Math. Soc., 37:2 (1973), 427–433 | DOI | MR | Zbl
[6] D. P. Ilyutko, E. A. Sevostyanov, “O prostykh kontsakh na rimanovykh mnogoobraziyakh”, Ukr. matem. vestnik, 15:3 (2018), 358–392 | MR
[7] D. A. Kovtonyuk, V. I. Ryazanov, “Prostye kontsy i klassy Orlicha–Soboleva”, Algebra i analiz, 27:5 (2015), 81–116 | MR
[8] E. A. Sevostyanov, “O granichnom prodolzhenii i ravnostepennoi nepreryvnosti semeistv otobrazhenii v terminakh prostykh kontsov”, Algebra i analiz, 30:6 (2018), 97–146
[9] R. Näkki, “Prime ends and quasiconformal mappings”, J. Anal. Math., 35 (1979), 13–40 | DOI | MR | Zbl
[10] E. A. Sevostyanov, Issledovanie prostranstvennykh otobrazhenii geometricheskim metodom, Naukova dumka, Kiev, 2014
[11] E. A. Sevostyanov, “O ravnostepennoi nepreryvnosti gomeomorfizmov s neogranichennoi kharakteristikoi”, Matem. tr., 15:1 (2012), 178–204 | MR | Zbl
[12] O. Lehto, K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York, 1973 | MR | Zbl
[13] R. Näkki, “Extension of Loewner's capacity theorem”, Trans. Amer. Math. Soc., 180 (1973), 229–236 | MR | Zbl