Equicontinuity of Families of Mappings with One Normalization Condition
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 597-607
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the behavior of a certain class of mappings of a domain in Euclidean space. We prove that this class is equicontinuous both at the interior and boundary points, of the domain provided that it consists of mappings that satisfy a common normalization condition and whose quasiconformality characteristic has only tempered growth in a neighborhood of each point in the closure of the domain.
Mots-clés :
quasiconformal analysis
Keywords: mapping with bounded and finite distortion, local and boundary behavior of a mapping.
Keywords: mapping with bounded and finite distortion, local and boundary behavior of a mapping.
@article{MZM_2021_109_4_a10,
author = {E. A. Sevost'yanov and S. Sergei},
title = {Equicontinuity of {Families} of {Mappings} with {One} {Normalization} {Condition}},
journal = {Matemati\v{c}eskie zametki},
pages = {597--607},
publisher = {mathdoc},
volume = {109},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a10/}
}
TY - JOUR AU - E. A. Sevost'yanov AU - S. Sergei TI - Equicontinuity of Families of Mappings with One Normalization Condition JO - Matematičeskie zametki PY - 2021 SP - 597 EP - 607 VL - 109 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a10/ LA - ru ID - MZM_2021_109_4_a10 ER -
E. A. Sevost'yanov; S. Sergei. Equicontinuity of Families of Mappings with One Normalization Condition. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 597-607. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a10/