Equicontinuity of Families of Mappings with One Normalization Condition
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 597-607

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of a certain class of mappings of a domain in Euclidean space. We prove that this class is equicontinuous both at the interior and boundary points, of the domain provided that it consists of mappings that satisfy a common normalization condition and whose quasiconformality characteristic has only tempered growth in a neighborhood of each point in the closure of the domain.
Mots-clés : quasiconformal analysis
Keywords: mapping with bounded and finite distortion, local and boundary behavior of a mapping.
@article{MZM_2021_109_4_a10,
     author = {E. A. Sevost'yanov and S. Sergei},
     title = {Equicontinuity of {Families} of {Mappings} with {One} {Normalization} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {597--607},
     publisher = {mathdoc},
     volume = {109},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a10/}
}
TY  - JOUR
AU  - E. A. Sevost'yanov
AU  - S. Sergei
TI  - Equicontinuity of Families of Mappings with One Normalization Condition
JO  - Matematičeskie zametki
PY  - 2021
SP  - 597
EP  - 607
VL  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a10/
LA  - ru
ID  - MZM_2021_109_4_a10
ER  - 
%0 Journal Article
%A E. A. Sevost'yanov
%A S. Sergei
%T Equicontinuity of Families of Mappings with One Normalization Condition
%J Matematičeskie zametki
%D 2021
%P 597-607
%V 109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a10/
%G ru
%F MZM_2021_109_4_a10
E. A. Sevost'yanov; S. Sergei. Equicontinuity of Families of Mappings with One Normalization Condition. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 597-607. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a10/