Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_3_a8, author = {I. S. Sergeev}, title = {Formula {Complexity} of a {Linear} {Function} in a $k$-ary {Basis}}, journal = {Matemati\v{c}eskie zametki}, pages = {419--435}, publisher = {mathdoc}, volume = {109}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a8/} }
I. S. Sergeev. Formula Complexity of a Linear Function in a $k$-ary Basis. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 419-435. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a8/
[1] V. M. Khrapchenko, “Ob odnom metode polucheniya nizhnikh otsenok slozhnosti $\Pi$-skhem”, Matem. zametki, 10:1 (1971), 83–92 | MR | Zbl
[2] B. A. Subbotovskaya, “O realizatsii lineinykh funktsii formulami v bazise $\vee$, $\$, $^-$”, Dokl. AN SSSR, 136:3 (1961), 553–555 | MR | Zbl
[3] B. A. Muchnik, “Otsenka slozhnosti realizatsii lineinoi funktsii formulami v nekotorykh bazisakh”, Kibernetika, 4 (1970), 29–38 | MR
[4] N. A. Peryazev, “Slozhnost predstavlenii bulevykh funktsii formulami v nemonolineinykh bazisakh”, Diskret. matem. i inform., 2, Izd-vo Irkutskogo un-ta, Irkutsk, 1995
[5] D. Yu. Cherukhin, “O slozhnosti realizatsii lineinoi funktsii formulami v konechnykh bulevykh bazisakh”, Diskret. matem., 12:1 (2000), 135–144 | DOI | MR | Zbl
[6] D. Yu. Cherukhin, “O skhemakh iz funktsionalnykh elementov konechnoi glubiny vetvleniya”, Diskret. matem., 18:4 (2006), 73–83 | DOI | MR | Zbl
[7] H. Chockler, U. Zwick, “Which bases admit non-trivial shrinkage of formulae?”, Comput. Complexity, 10 (2001), 28–40 | DOI | MR
[8] D. Yu. Cherukhin, “O realizatsii lineinoi funktsii formulami v razlichnykh bazisakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 6, 15–19 | MR | Zbl
[9] K. Ueno, “Formula complexity of ternary majorities”, Computing and Combinatorics, Lecture Notes in Comput. Sci., 7434, Springer, Heidelberg, 2012, 433–444 | MR
[10] I. S. Sergeev, “Verkhnie otsenki slozhnosti formul dlya simmetricheskikh bulevykh funktsii”, Izv. vuzov. Matem., 2014, no. 5, 38–52
[11] I. S. Sergeev, “O slozhnosti i glubine formul dlya simmetricheskikh bulevykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2016, no. 3, 53–57 | MR
[12] M. M. Rokhlina, “O skhemakh, povyshayuschikh nadezhnost”, Problemy kibernetiki, 23, Nauka, M., 1970, 295–301 | MR
[13] A. Gupta, S. Mahajan, “Using amplification to compute majority with small majority gates”, Comput. Complexity, 6 (1996), 46–63 | DOI | MR
[14] S. Jukna, Boolean Function Complexity, Algorithms Combin., 27, Springer-Verlag, Berlin, 2012 | MR
[15] I. Wegener, Complexity of Boolean functions, B. G. Teubner, Stuttgart, 1987 | MR
[16] K. L. Rychkov, “Modifikatsiya metoda V. M. Khrapchenko i primenenie ee k otsenkam slozhnosti $\Pi$-skhem dlya kodovykh funktsii”, Metody diskretnogo analiza v teorii grafov i skhem, 42, IM SO AN SSSR, Novosibirsk, 1985, 91–98
[17] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl
[18] M. S. Paterson, N. Pippenger, U. Zwick, “Optimal carry save networks”, Boolean Function Complexity, London Math. Soc. Lecture Note Ser., 169, Cambridge Univ. Press, Cambridge, 1992, 174–201 | MR