On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes
Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 397-406

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G^d$ be a power of the Cantor binary group $G$. The uniqueness problem for a multiple Walsh series on a power of the binary group in the case of convergence in cubes is discussed. It is proved that if $x\in G^{d-1}$, then $G\times \{x\}$ is the uniqueness set of a $d$-dimensional Walsh series in the case of convergence in cubes.
Keywords: multiple Walsh series, uniqueness set.
Mots-clés : convergence in cubes
@article{MZM_2021_109_3_a6,
     author = {S. F. Lukomskii},
     title = {On the {Uniqueness} {Sets} of {Multiple} {Walsh} {Series} for {Convergence} in {Cubes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {397--406},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a6/}
}
TY  - JOUR
AU  - S. F. Lukomskii
TI  - On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes
JO  - Matematičeskie zametki
PY  - 2021
SP  - 397
EP  - 406
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a6/
LA  - ru
ID  - MZM_2021_109_3_a6
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%T On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes
%J Matematičeskie zametki
%D 2021
%P 397-406
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a6/
%G ru
%F MZM_2021_109_3_a6
S. F. Lukomskii. On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 397-406. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a6/