On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes
Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 397-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G^d$ be a power of the Cantor binary group $G$. The uniqueness problem for a multiple Walsh series on a power of the binary group in the case of convergence in cubes is discussed. It is proved that if $x\in G^{d-1}$, then $G\times \{x\}$ is the uniqueness set of a $d$-dimensional Walsh series in the case of convergence in cubes.
Keywords: multiple Walsh series, uniqueness set.
Mots-clés : convergence in cubes
@article{MZM_2021_109_3_a6,
     author = {S. F. Lukomskii},
     title = {On the {Uniqueness} {Sets} of {Multiple} {Walsh} {Series} for {Convergence} in {Cubes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {397--406},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a6/}
}
TY  - JOUR
AU  - S. F. Lukomskii
TI  - On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes
JO  - Matematičeskie zametki
PY  - 2021
SP  - 397
EP  - 406
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a6/
LA  - ru
ID  - MZM_2021_109_3_a6
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%T On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes
%J Matematičeskie zametki
%D 2021
%P 397-406
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a6/
%G ru
%F MZM_2021_109_3_a6
S. F. Lukomskii. On the Uniqueness Sets of Multiple Walsh Series for Convergence in Cubes. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 397-406. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a6/

[1] A. Shneider, “O edinstvennosti razlozhenii po sisteme funktsii Uolsha”, Matem. sb., 24 (66):2 (1949), 279–300 | MR | Zbl

[2] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR

[3] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul mernykh gruppakh, ELM, Baku, 1981 | MR

[4] F. Shipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Akademiai Kiado, Budapest, 1990 | MR

[5] S. F. Lukomskii, “O nekotorykh klassakh mnozhestv edinstvennosti kratnykh ryadov Uolsha”, Matem. sb., 180:7 (1989), 937–945 | MR | Zbl

[6] T. A. Zherebeva, “Ob odnom klasse mnozhestv edinstvennosti dlya dvoinykh ryadov Uolsha”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2007, no. 5, 13–18 | MR | Zbl

[7] T. A. Zherebeva, “Ob odnom klasse mnozhestv edinstvennosti dlya kratnykh ryadov Uolsha”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2009, no. 2, 14–21 | MR | Zbl

[8] S. F. Lukomskii, “On a $U$-set for multiple Walsh series”, Anal. Math., 18:2 (1992), 127–138 | DOI | MR

[9] S. F. Lukomskii, Predstavlenie funktsii ryadami Uolsha i koeffitsienty skhodyaschikhsya ryadov Uolsha, Dis. $\dots$ dokt. fiz.-matem. nauk, Saratovskii gos. un-t, Saratov, 1996

[10] M. G. Plotnikov, “O kratnykh ryadakh Uolsha, skhodyaschikhsya po kubam”, Izv. RAN. Ser. matem., 71:1 (2007), 61–78 | DOI | MR | Zbl

[11] M. G. Plotnikov, “O mnozhestvakh edinstvennosti dlya kratnykh ryadov Uolsha”, Matem. zametki, 81:2 (2007), 265–279 | DOI | MR | Zbl

[12] M. G. Plotnikov, “Kvazimery na gruppe $G^m$, mnozhestva Dirikhle i problemy edinstvennosti dlya kratnykh ryadov Uolsha”, Matem. sb., 201:12 (2010), 131–156 | DOI | MR | Zbl

[13] M. G. Plotnikov, “Kvazimery, khausdorfovy $p$-mery i ryady Uolsha i Khaara”, Izv. RAN. Ser. matem., 74:4 (2010), 157–188 | DOI | MR | Zbl

[14] M. G. Plotnikov, “$\lambda$-Skhodimost kratnykh ryadov Uolsha–Peli i mnozhestva edinstvennosti”, Matem. zametki, 102:2 (2017), 292–301 | DOI | MR