Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_3_a3, author = {E. V. Zhuzhoma and V. S. Medvedev}, title = {Underlying {Manifolds} of {High-Dimensional} {Morse--Smale} {Diffeomorphisms} with {Two} {Saddle} {Periodic} {Points}}, journal = {Matemati\v{c}eskie zametki}, pages = {361--369}, publisher = {mathdoc}, volume = {109}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/} }
TY - JOUR AU - E. V. Zhuzhoma AU - V. S. Medvedev TI - Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points JO - Matematičeskie zametki PY - 2021 SP - 361 EP - 369 VL - 109 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/ LA - ru ID - MZM_2021_109_3_a3 ER -
%0 Journal Article %A E. V. Zhuzhoma %A V. S. Medvedev %T Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points %J Matematičeskie zametki %D 2021 %P 361-369 %V 109 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/ %G ru %F MZM_2021_109_3_a3
E. V. Zhuzhoma; V. S. Medvedev. Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 361-369. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/
[1] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Klassifikatsiya sistem Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, UMN, 74:1 (445) (2019), 41–116 | DOI
[2] S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR
[3] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR
[4] E. V. Zhuzhoma, V. S. Medvedev, “Globalnaya dinamika sistem Morsa–Smeila”, Differentsialnye uravneniya i dinamicheskie sistemy, Tr. MIAN, 261, MAIK «Nauka/Interperiodika», M., 2008, 115–139 | MR | Zbl
[5] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2011
[6] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Differentsialnye uravneniya i topologiya. II, Tr. MIAN, 271, MAIK «Nauka/Interperiodika», M., 2010, 111–133 | MR
[7] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “O diffeomorfizmakh Morsa–Smeila s chetyrmya periodicheskimi tochkami na zamknutykh orientiruemykh mnogoobraziyakh”, Matem. zametki, 74:3 (2003), 369–386 | DOI | MR | Zbl
[8] V. Medvedev, E. Zhuzhoma, “Morse–Smale systems with few non-wandering points”, Topology Appl., 160:3 (2013), 498–507 | DOI | MR
[9] R. J. Daverman, G. A. Venema, Embeddings in Manifolds, Grad. Stud. Math., 106, Amer. Math. Soc., Providence, RI, 2009 | MR
[10] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, V. S. Medvedev, “O topologii mnogoobrazii, dopuskayuschikh gradientno-podobnye potoki s zadannym nebluzhdayuschim mnozhestvom”, Matem. tr., 21:2 (2018), 163–180 | DOI
[11] A. V. Chernavskii, “Ob osobykh tochkakh topologicheskikh vlozhenii mnogoobrazii i ob'edinenii lokalno ploskikh kletok”, Dokl. AN SSSR, 167:3 (1966), 528–530 | MR | Zbl
[12] J. C. Cantrell, “Almost locally flat embeddings of $S^{n-1}$ in $S^n$”, Bull. Amer. Math. Soc., 69 (1963), 716–718 | DOI | MR
[13] L. S. Pontryagin, Gladkie mnogoobraziya i ikh primeneniya v teorii gomotopii, Nauka, M., 1976 | MR