Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points
Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 361-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the topological structure of closed manifolds of dimension $\ge4$ that admit Morse–Smale diffeomorphisms whose nonwandering sets contain arbitrarily many sink periodic points, arbitrarily many source periodic points, and two saddle periodic points. The underlying manifolds of Morse–Smale diffeomorphisms with fewer saddle periodic points are also described.
Keywords: Morse–Smale diffeomorphism, nonwandering set, topological structure.
@article{MZM_2021_109_3_a3,
     author = {E. V. Zhuzhoma and V. S. Medvedev},
     title = {Underlying {Manifolds} of {High-Dimensional} {Morse--Smale} {Diffeomorphisms} with {Two} {Saddle} {Periodic} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {361--369},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points
JO  - Matematičeskie zametki
PY  - 2021
SP  - 361
EP  - 369
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/
LA  - ru
ID  - MZM_2021_109_3_a3
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points
%J Matematičeskie zametki
%D 2021
%P 361-369
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/
%G ru
%F MZM_2021_109_3_a3
E. V. Zhuzhoma; V. S. Medvedev. Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 361-369. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/

[1] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Klassifikatsiya sistem Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, UMN, 74:1 (445) (2019), 41–116 | DOI

[2] S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR

[3] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR

[4] E. V. Zhuzhoma, V. S. Medvedev, “Globalnaya dinamika sistem Morsa–Smeila”, Differentsialnye uravneniya i dinamicheskie sistemy, Tr. MIAN, 261, MAIK «Nauka/Interperiodika», M., 2008, 115–139 | MR | Zbl

[5] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2011

[6] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Globalnye attraktor i repeller diffeomorfizmov Morsa–Smeila”, Differentsialnye uravneniya i topologiya. II, Tr. MIAN, 271, MAIK «Nauka/Interperiodika», M., 2010, 111–133 | MR

[7] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “O diffeomorfizmakh Morsa–Smeila s chetyrmya periodicheskimi tochkami na zamknutykh orientiruemykh mnogoobraziyakh”, Matem. zametki, 74:3 (2003), 369–386 | DOI | MR | Zbl

[8] V. Medvedev, E. Zhuzhoma, “Morse–Smale systems with few non-wandering points”, Topology Appl., 160:3 (2013), 498–507 | DOI | MR

[9] R. J. Daverman, G. A. Venema, Embeddings in Manifolds, Grad. Stud. Math., 106, Amer. Math. Soc., Providence, RI, 2009 | MR

[10] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, V. S. Medvedev, “O topologii mnogoobrazii, dopuskayuschikh gradientno-podobnye potoki s zadannym nebluzhdayuschim mnozhestvom”, Matem. tr., 21:2 (2018), 163–180 | DOI

[11] A. V. Chernavskii, “Ob osobykh tochkakh topologicheskikh vlozhenii mnogoobrazii i ob'edinenii lokalno ploskikh kletok”, Dokl. AN SSSR, 167:3 (1966), 528–530 | MR | Zbl

[12] J. C. Cantrell, “Almost locally flat embeddings of $S^{n-1}$ in $S^n$”, Bull. Amer. Math. Soc., 69 (1963), 716–718 | DOI | MR

[13] L. S. Pontryagin, Gladkie mnogoobraziya i ikh primeneniya v teorii gomotopii, Nauka, M., 1976 | MR