Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points
Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 361-369

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the topological structure of closed manifolds of dimension $\ge4$ that admit Morse–Smale diffeomorphisms whose nonwandering sets contain arbitrarily many sink periodic points, arbitrarily many source periodic points, and two saddle periodic points. The underlying manifolds of Morse–Smale diffeomorphisms with fewer saddle periodic points are also described.
Keywords: Morse–Smale diffeomorphism, nonwandering set, topological structure.
@article{MZM_2021_109_3_a3,
     author = {E. V. Zhuzhoma and V. S. Medvedev},
     title = {Underlying {Manifolds} of {High-Dimensional} {Morse--Smale} {Diffeomorphisms} with {Two} {Saddle} {Periodic} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {361--369},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points
JO  - Matematičeskie zametki
PY  - 2021
SP  - 361
EP  - 369
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/
LA  - ru
ID  - MZM_2021_109_3_a3
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points
%J Matematičeskie zametki
%D 2021
%P 361-369
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/
%G ru
%F MZM_2021_109_3_a3
E. V. Zhuzhoma; V. S. Medvedev. Underlying Manifolds of High-Dimensional Morse--Smale Diffeomorphisms with Two Saddle Periodic Points. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 361-369. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a3/