Example of Divergence of a Greedy Algorithm with Respect to an Asymmetric Dictionary
Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 352-360
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct an example of an asymmetric dictionary $D$ in a Hilbert space $H$ such that the linear combinations of elements of $D$ with positive coefficients are dense in $H$, but the greedy algorithm with respect to $D$, in which inner product with the elements of $D$ (not the modulus of this inner product) is maximized at each step, diverges for some initial element.
Keywords:
Hilbert space, greedy approximations, asymmetric dictionary
Mots-clés : convergence.
Mots-clés : convergence.
@article{MZM_2021_109_3_a2,
author = {P. A. Borodin},
title = {Example of {Divergence} of a {Greedy} {Algorithm} with {Respect} to an {Asymmetric} {Dictionary}},
journal = {Matemati\v{c}eskie zametki},
pages = {352--360},
year = {2021},
volume = {109},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a2/}
}
P. A. Borodin. Example of Divergence of a Greedy Algorithm with Respect to an Asymmetric Dictionary. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 352-360. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a2/
[1] V. Temlyakov, Greedy Approximation, Cambridge Univ. Press, Cambridge, 2018 | MR
[2] L. Jones, “On a conjecture of Huber concerning the convergence of projection pursuit regression”, Ann. Statist., 15:2 (1987), 880–882 | DOI | MR
[3] P. A. Borodin, “Zhadnye priblizheniya proizvolnym mnozhestvom”, Izv. RAN. Ser. matem., 84:2 (2020), 43–59 | DOI
[4] E. D. Livshits, “O vozvratnom zhadnom algoritme”, Izv. RAN. Ser. matem., 70:1 (2006), 95–116 | DOI | MR | Zbl
[5] E. D. Livshits, “Ob $n$-chlennom priblizhenii s neotritsatelnymi koeffitsientami”, Matem. zametki, 82:3 (2007), 373–382 | DOI | MR | Zbl