Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws
Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 338-351

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of nonlinear parabolic equations with small parameter multiplying the highest derivative and stochastic models associated with them are considered. It is shown that the vanishing viscosity method, which makes it possible to choose physical solutions to the Cauchy problem for systems of nonlinear conservation laws, has a natural justification in terms of stochastic models. A similar result for balance laws is also obtained.
Keywords: parabolic and hyperbolic conservation and balance laws, stochastic equations, small parameter.
@article{MZM_2021_109_3_a1,
     author = {Ya. I. Belopol'skaya},
     title = {Probabilistic {Interpretation} of the {Vanishing} {Viscosity} {Method} for {Systems} of {Conservation} and {Balance} {Laws}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {338--351},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a1/}
}
TY  - JOUR
AU  - Ya. I. Belopol'skaya
TI  - Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws
JO  - Matematičeskie zametki
PY  - 2021
SP  - 338
EP  - 351
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a1/
LA  - ru
ID  - MZM_2021_109_3_a1
ER  - 
%0 Journal Article
%A Ya. I. Belopol'skaya
%T Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws
%J Matematičeskie zametki
%D 2021
%P 338-351
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a1/
%G ru
%F MZM_2021_109_3_a1
Ya. I. Belopol'skaya. Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 338-351. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a1/