Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws
Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 338-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of nonlinear parabolic equations with small parameter multiplying the highest derivative and stochastic models associated with them are considered. It is shown that the vanishing viscosity method, which makes it possible to choose physical solutions to the Cauchy problem for systems of nonlinear conservation laws, has a natural justification in terms of stochastic models. A similar result for balance laws is also obtained.
Keywords: parabolic and hyperbolic conservation and balance laws, stochastic equations, small parameter.
@article{MZM_2021_109_3_a1,
     author = {Ya. I. Belopol'skaya},
     title = {Probabilistic {Interpretation} of the {Vanishing} {Viscosity} {Method} for {Systems} of {Conservation} and {Balance} {Laws}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {338--351},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a1/}
}
TY  - JOUR
AU  - Ya. I. Belopol'skaya
TI  - Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws
JO  - Matematičeskie zametki
PY  - 2021
SP  - 338
EP  - 351
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a1/
LA  - ru
ID  - MZM_2021_109_3_a1
ER  - 
%0 Journal Article
%A Ya. I. Belopol'skaya
%T Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws
%J Matematičeskie zametki
%D 2021
%P 338-351
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a1/
%G ru
%F MZM_2021_109_3_a1
Ya. I. Belopol'skaya. Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 338-351. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a1/

[1] P. D. Lax, “Hyperbolic systems of conservation laws”, Comm. Pure Appl Math., 10 (1957), 537–566 | DOI | MR

[2] S. Bianchini, A. Bressan, “Vanishing viscosity solutions of nonlinear hyperbolic systems”, Ann. of Math. (2), 161:1 (2006), 223–342 | DOI | MR

[3] D. Serre, “The structure of dissipative viscous system of conservation laws”, Phys. D, 239:15 (2010), 1381–1386 | DOI | MR

[4] M. I. Freidlin, “Kvazilineinye parabolicheskie uravneniya i mery v funktsionalnom prostranstve”, Funkts. analiz i ego pril., 1:3 (1967), 74–82 | MR | Zbl

[5] M. Freidlin, Functional Integration and Partial Differential Equations, Ann. of Math. Stud., 109, Princeton Univ. Press, Princeton, NJ, 1985 | MR

[6] Ya. I. Belopolskaya, Yu. L. Daletskii, “Issledovanie zadachi Koshi dlya kvazilineinykh parabolicheskikh sistem pri pomoschi markovskikh sluchainykh protsessov”, Izv. vuzov. Matem., 1978, no. 12, 6–17 | MR | Zbl

[7] Ya. Belopol'skaya, Yu. L. Dalecky, Stochastic Equations and Differential Geometry, Kluwer Acad. Publ., Dodrecht, 1990 | MR

[8] Ya. I. Belopolskaya, “Veroyatnostnye modeli dinamiki rosta kletok pri kontaktnom ingibirovanii”, Matem. zametki, 101:3 (2017), 346–358 | DOI | MR

[9] Ya. Belopolskaya, “Probabilistic interpretations of quasilinear parabolic systems”, Differential Equations, Mathematical Physics, and Applications, Contemp. Math., 734, Amer. Math. Soc., Providence, RI, 2019, 39–57 | MR

[10] B. Oksendal, Stokhasticheskie differentsialnye uravneniya, Mir, M., 2003 | MR